

    
      
          
            
  
Note

Want your school on Semester.ly? We want it too! Want to see a new feature to help your peers? Let’s make it happen. We want to help you make the impact you want to see. We’ll even find you something impactful to work on if you’re not sure where to start.




About Semester.ly

Built for students by students. Semester.ly is an open source web platform created to bring modern technology to the most difficult and archaic parts of higher education. It all started with one problem, universal across all college campuses: course registration is a pain. Spreadsheets, sticky notes, PDFs of course evaluations, and an outdated registration platform….it is all too much in the heat of classes and exams. We set out with the mission to make college more collaborative and more stress free.


What We Believe In

Today, we work to solve many more exciting problems in this space across many more universities. However, our fundamental beliefs remain the same:


Course registration should be easy


Picking the right classes should be quick and painless. We believe high quality, centralized, and shareable information makes for better decision making. By doing the legwork for you, Semester.ly gives you more time to study for your courses, and decreases the time spent studying which classes to take.







Education should be collaborative


Studies show the positive impact that friendship has in higher education classrooms. Having courses with friends and a tigther knit university community increases student success and retention. That’s why Semester.ly helps students find courses with friends and helps new students make new friends in their classes.







Students know best


Universities can’t keep up with technology. Most university systems aren’t even mobile responsive! Forget about using social media. That’s why Semester.ly is built by students, and always will be.















            

          

      

      

    

  

    
      
          
            
  
Installation

This guide will bring you through the steps of creating a local Semester.ly server and
development environment. It will walk through the setup of the core ecosystems we work
within: Django/Python and React/Node/JS. It will additionally require the setup of a
PostgreSQL database.


Setting up Visual Studio Code

We recommend using Visual Studio Code [https://code.visualstudio.com/]
(VSCode) for its integration with WSL 2, Docker, and the Postgres database.
This section assumes you will be using Visual Studio Code for development with
Semester.ly.

1. If you are on Windows OS, see the following guide on
installing Windows Subsystem for Linux (WSL) [https://docs.microsoft.com/en-us/windows/wsl/install-win10]. We recommend
choosing Ubuntu 20.04 as your linux distribution. Make sure you take the extra
steps to enable WSL 2 as it will be required for Docker.

After WSL 2 is installed, install the Remote - WSL extension by Microsoft [https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-wsl]
in VSCode. This will allow you to open a VSCode window within your linux
subsystem. Press Ctrl+Shift+P and select the option Remote-WSL: New WSL
Window.

2. Install the Docker extension by Microsoft [https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-docker], the
remote containers extension by
Microsoft [https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-containers]
and the Postgres extension by Chris Kolkman [https://marketplace.visualstudio.com/items?itemName=ckolkman.vscode-postgres].

3. Ensure that you are in a WSL Window in VSCode before continuing to the next
step. You can open a terminal by selecting the menu option Terminal -> New
Terminal.




Fork/Clone The Repository

Forking Semester.ly will create your own version of Semester.ly listed on your GitHub!
Cloning your Semester.ly fork will create a directory with all of the code required to run your own local development server. Navigate to the directory you wish to work from, then execute:


	Fork navigate to our GitHub repository [https://github.com/jhuopensource/semesterly/] then, in the top-right corner of the page, click Fork.


	Clone by executing this line on the command line:



Note

ATTENTION: Be sure to replace [YOUR-USERNAME] with your own git username



git clone https://github.com/[YOUR-USERNAME]/semesterly










	Enter the directory:


cd semesterly










	Set up the upstream remote to jhuopensource/semesterly:


git remote add upstream https://github.com/jhuopensource/semesterly















Setting up Docker

Steps are below on getting your local development environment running:


	
	Download and install docker for your environment (Windows/Mac/Linux are supported)
	https://www.docker.com/get-started







	Create semesterly/local_settings.py as follows:


DEBUG = True
DATABASES = {
    'default': {
        'ENGINE': 'django.db.backends.postgresql_psycopg2',
        'NAME': 'postgres',
        'USER': 'postgres',
        'PASSWORD': '',
        'HOST': 'db',
        'PORT': '5432',
    }
}






Note

ATTENTION: When you clone the repo, you get a folder called semesterly and inside there is another folder called semesterly. Put this in the second semesterly folder.








	Edit semesterly/dev_credentials.py and add a value for JHU_API_KEY in single quotes like below.


You can request this API KEY from http://sis.jhu.edu/api.

'JHU_API_KEY': 'xxxxxxxx',






Note

ATTENTION: This is also in the second semesterly directory.

Now run this command in your terminal to make sure that this file isn’t tracked by Git and your API key stays local to you.



git update-index --skip-worktree semesterly/dev_credentials.py





Alternatively, you may create semesterly/sensitive.py as follows:

SECRETS = {
    'JHU_API_KEY': 'xxxxxxxx',
    # Other sensitive information goes here
}





This file will automatically be ignored by git. Be sure to replace
‘xxxxxxxx’ with your own API key.






	Append this entry to your hosts file as follows (This file is in C:\Windows\System32\drivers\etc\hosts or /etc/hosts)


127.0.0.1       sem.ly jhu.sem.ly






Note

ATTENTION: If you’re working on other schools, add their URLs here as well (i.e. uoft.sem.ly for University of Toronto).








	Launch terminal or a command window and run:


docker-compose build && docker-compose up





The build command creates a local database and build of your source code.
The up command runs everything. Be careful not to build when you don’t need to as this will destroy your entire database and you’ll need to ingest/digest again to get your course data (which takes about 30 minutes).


Note

If you run into additional errors, try the following:


1. Change “buildkit” from true to false in Settings -> Docker
Engine.

2. Refer to the Docker troubleshooting document [https://github.com/microsoft/vscode-docker/wiki/Troubleshooting]






Open a browser and visit http://jhu.sem.ly:8000 to verify you have
Semester.ly running.


Note

In order to log in on your local running version of Semester.ly, you will need
access to auth keys. Please ask one of the current developers for access to
these keys if you require use of login authentication for development.
Furthermore, some logins require use of https, so ensure that you are on
https://jhu.sem.ly instead of http://jhu.sem.ly:8000 in these cases.











Tip

If you ever need to hard reset Docker, use the command docker system prune -a.
You can then follow up with docker-compose build && docker-compose up.






Setting up Postgres

You can easily access the Postgres database within VSCode by following the next
steps. You should have the Postgres extension by Chris Kolkman [https://marketplace.visualstudio.com/items?itemName=ckolkman.vscode-postgres]
installed.


	Open the Postgres explorer on the left pane and click the plus button in the top right of the explorer to add a new database connection.


	Enter 127.0.0.1 as the database connection.


	Enter postgres as the user to authenticate as.


	Enter nothing as the password of the PostgreSQL user.


	Enter 5432 as the port number to connect to.


	Select Standard Connection.


	Select postgres.


	Enter a display name for the database connection, such as semesterly.




Upon expanding a few tabs under the new semesterly database, you should see
several tables. Right clicking any of these tables gives you options to select
(view) the items in the table or run a query.

If this is your first time running Semester.ly, you will want to populate your
database with courses. Before you continue to Loading the Database, please read the
following additional tips for working with Docker and Postgres.







            

          

      

      

    

  

    
      
          
            
  
Loading the Database

To load the database you must ingest (create the course JSON), validate (make sure the data makes sense), and digest (load the JSON into the database). You can do so using the following commands:


Tip

You will often have to run commands within the Docker containers. To access
containers, open the Docker explorer on the left pane. There should be three
containers named jhuopensource/semesterly, semesterly, and
postgres:12.1. Right clicking any of these should give you the option Attach
Shell, which will open a terminal into the corresponding container. For this
section, attach the shell to the semesterly container.




Ingest


Note

To parse JHU data, you will need to acquire an API access key from SIS [https://sis.jhu.edu/api]. Add the key to dev_credentials.py in the semesterly/ directory. Also, note that the [SCHOOLCODE] is jhu.



python manage.py ingest [SCHOOLCODE] --years [YEARS] --terms [TERMS]





For example, use python manage.py ingest jhu --years 2022 --terms Spring to parse
Spring 2022 courses. You may also leave out the school code to parse all schools. This
will run for a substantial amount of time and is not recommended.


Note

If you have ingested before and still have the JSON file on your device, you may skip ingesting and simply digest the old data. This is useful if you are resetting your database during development and wish to quickly reload course data.






Digest

python manage.py digest [SCHOOLCODE]





You may leave out the school code to digest all schools.




Learn More & Advanced Usage

There are advanced methods for using these tools. Detailed options can be viewed by running

python manage.py [command] --help





If you are developing a parser or contributing to the pipeline design, you will more than likely need to learn more. Checkout Data Pipeline Documentation or Add a School


Tip

You may need to run Postgres commands beyond what running queries through the
Postgres extension is capable of. In this case, attach a shell to the postgres
container and run psql -U postgres. You should now be in the postgres shell. You
can use \q to leave it.









            

          

      

      

    

  

    
      
          
            
  
Advanced Configuration


VSCode Extensions


Tip

Previously in Installation, we told you to install the remote containers extension by
Microsoft [https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-containers].
When you docker-compose up, in the Docker tab when right-clicking a container,
you should see Attach Visual Studio Code in addition to Attach Shell. It is
recommended that you develop (and install these extensions) while using VSCode
attached to the container in order to match the build environment.



Extensions can help you be more productive when working on Semester.ly code. Feel free
to ask current developers what extensions they use. Here are a few we suggest:

1. Python + PyLance [https://marketplace.visualstudio.com/items?itemName=ms-python.python].
With this extension, you can set your default formatter (black) and default linter
(pycodestyle). If you choose to set pycodestyle as your linter, be sure to change
max-line-length to 88.

2. JavaScript + TypeScript [https://marketplace.visualstudio.com/items?itemName=ms-vscode.vscode-typescript-next].
TypeScript support for development.

3. ESLint [https://marketplace.visualstudio.com/items?itemName=dbaeumer.vscode-eslint].
As one of our checks requires ESLint to be satisfied, this will save you some time.

4. Prettier [https://marketplace.visualstudio.com/items?itemName=esbenp.prettier-vscode].
Formats JS/TS for you. You will want to set Prettier as your default formatter, and
we suggest you set Format Document On Save to be on in your VSCode preferences.

5. IntelliCode [https://marketplace.visualstudio.com/items?itemName=VisualStudioExptTeam.vscodeintellicode].
Provides useful suggestions.

6. GitHub Copilot [https://marketplace.visualstudio.com/items?itemName=GitHub.copilot]. Can often
write your code for you, but be sure to double check it.

7. Bookmarks [https://marketplace.visualstudio.com/items?itemName=alefragnani.Bookmarks]. Lets
you mark places in code that you want to revisit.

8. Rewrap [https://marketplace.visualstudio.com/items?itemName=stkb.rewrap]. It helps
with wrapping text for you when editing documentation or code comments.

9. Sourcery [https://marketplace.visualstudio.com/items?itemName=sourcery.sourcery].
Sometimes will help you write cleaner Python code.

10. SpellChecker [https://marketplace.visualstudio.com/items?itemName=swyphcosmo.spellchecker].
Helps you find typos in documentation.




Overriding/Setting Secrets


Note

This step is not neccessary for most developers. Only continue reading this
section if you need to override the test secrets (API keys/credentials) provided by
Semester.ly (which are for testing only).



Semester.ly makes use of several secrets which allow it to interact securely with third
party software providers. These providers include Facebook (for oauth and social graph),
Google (oauth), and university APIs.

In order for Semester.ly to run out of the box, we have included credentials to test
Google and Facebook applications for development purposes. We override these keys for
production use thereby keeping our client secrets… well, secrets! These provided
credentials can be found in semesterly/dev_credentials.py:

SECRETS = {
    #Credentials for a test application for Semester.ly (+ Google/Facebook)
    'SECRET_KEY': ...,
    'HASHING_SALT': ...,
    'GOOGLE_API_KEY': ...,
    'SOCIAL_AUTH_GOOGLE_OAUTH2_KEY': ...,
    'SOCIAL_AUTH_GOOGLE_OAUTH2_SECRET': ...,
    'SOCIAL_AUTH_FACEBOOK_KEY': ...,
    'SOCIAL_AUTH_FACEBOOK_SECRET': ...,
    'FB_TEST_EMAIL': ...,
    'FB_TEST_PASS': ...,
    'SOCIAL_AUTH_AZURE_TENANT_KEY': ...,
    'SOCIAL_AUTH_AZURE_TENANT_SECRET': ...,
    'SOCIAL_AUTH_AZURE_TENANT_ID': ...,
    'STUDENT_SIS_AUTH_SECRET': ...,

    #Not essential for testing, but can be filled in for advanced usage
    ...
}





However, if you wish to override these credentials or add login credentials for a school
which requires a client secret, you may add your key/value pair to
semesterly/sensitive.py. This file is gitignored and will be kept private so you can
safely store the private information you wish within this file. It should have a format
indentical to SECRETS above and in semesterly/dev_credentials.py.




Using Secrets

In order to properly access a secret from anywhere within the code, simply import the
get_secret function and use it to access the secret by key:

from semesterly.settings import get_secret
hashids = Hashids(salt=get_secret('HASHING_SALT'))





This will check the following locations for the secret (in order, using the first value
it finds), throwing an error if it does not find the key at all:



	Check OS environment variables


	Check semesterly/sensitive.py


	Default to semesterly/dev_credentials.py


	Error













            

          

      

      

    

  

    
      
          
            
  
High Level Design

A high level description of what Semester.ly is, how it works, and which parts do what


Problem

Course registration is a complicated process involving several factors that influence
which courses a student decides to take, such as degree requirements, professor and
course ratings, friends, and personal interests. Trying to keep track of potential
schedules a student can take can easily become overwhelming.




Solution

Semester.ly aims to make course registration easy and collaborative through a user
interface that focuses on student needs, providing quick access to necessary tools a
student may need in order to organize and decide on what courses they want to take.




Current Features


Search

[image: _images/search_labels.png]
By typing in a query in the search field at the top of the site, students can quickly
search for courses that they are looking for.


	Clicking on the course search result will reveal more information about the course
(see below).


	[Deprecated] This button will add the course to your optional courses, meaning
Semester.ly will try to fit the course into your schedule if there’s space for it.


	Add course to schedule.


	Hovering over these course sections will preview what your schedule looks if you were
to add the course.




[image: _images/course_modal1.png]
Example of course information, which includes how many credits the course is, a brief
description, [deprecated] course evaluations, sections, and students’ reactions

There is also an option for Advanced Search, allowing for filtering of
department, area, course level, and day/time.

[image: _images/advanced_search.png]
The courses you add to your schedule will show up in a color-coded display to allow you
to easily distinguish between courses and when they take place.




Scheduling

[image: _images/general_labels.png]

	Rotate through potential schedules based on differing sections


	Switch the semester from, e.g. Fall 2022 to Spring 2022


	Open the Advanced Search


	Add current courses to SIS cart; requires JHU Login


	Add a custom event; this is to add, e.g. an extracurricular to the schedule, or any
other activity that is not a course.


	Generate a share link to share the schedule with other students


	Create a new schedule


	Export the calendar to a .ics file


	Preferences menu, e.g. toggle on/off weekends


	Change schedule name


	Select another schedule (of the same semester) to switch to it.


	(Behind the dropdown) Find New Friends displays other students who are also taking
your classes.


	Compares two schedules together, showing same and differing courses


	Opens various account settings


	Duplicate schedule


	Delete schedule







Screenshots

[image: _images/compare_timetables.png]
An example of what it looks like to compare two schedules.






Features in Development


	Enhancing Search - display more than 4 results and scroll infinitely when searching
for courses regularly


	Dark Mode - option to toggle between light and dark mode


	Study Groups - option to message students who are also taking your class to ask if
they want to study together or go to class together







Tech Stack

Semester.ly pulls data about courses, ratings, and more from all across the internet. It saves this data into a custom representation within a Postgres database. The data is retrieved using a variety of webscraping, HTML parsing, and information retrieval techniques which we’ve built into our own mini-library of utilities. This data is entered into the database via the Django ORM (Object-Relational Mapping). The ORM allows us to query the database and create rows using python code as if these rows were objects.

We manipulate and access this same data using Django views to respond to any web requests directed to our server. For example, when a user clicks on a course to open the course modal, the browser issues a request asking for the data related to that course. Our Django views respond with a JSON representation of the course data for rendering on the UI.

The browser knows when and how to make these requests, as well as how to generate the UI based on the responses using React and Redux. React and Redux maintain application state and use Javascript/Typescript to render HTML based on that state.

Finally, this HTML is styled with SCSS for an appealing, cohesively styled user experience!




The Apps that Make Semester.ly

The overall, the Semester.ly application is made up of many smaller apps which each handle some collection of logic that makes Semester.ly tick! Each app encapsulates a set of urls which map a request to a view, views which respond to requests with HTML/JSON/etc, models which represent tables in the database, and tests which ensure Functionality behaves as expected.








	App Name

	Key Models/Functionality

	Description





	Agreement

	Terms of Service and Privacy Policy views

	Tracks changes to terms of service and privacy policy.



	Analytics

	Models: SharedTimetable, DeviceCookie, Feature Views

	Tracks analytics on the usage of features as objects in the database. Renders a dashboard at /analytics.



	Authpipe

	Authentication, login, signup

	Authentication pipeline functions for the authentication of users, creation of students, and loading of social data.



	Courses

	Course Serializer, Views for returning course info

	Functionality for accessing course data, the course modal, course pages



	Integrations

	Integration views

	Functionality for integrating school specific code to appear in search or in the course modal



	Parsing

	Scrapers, parsers, parsing utilities

	Home of the data pipeline that fills our database



	Searches

	Advanced search, basic search

	Views for parsing queries and returning course data



	Semesterly

	No core models, views, or functionality; contains Django settings.

	Delegates urls to sub-apps, contains end-to-end tests, other configuration.



	Students

	Models: Student, Personal Timetables, Reactions, Personal Event

	All logic for logged-in specific users. Creating and saving a personal timetable, reacting to courses, saving custom events.



	Timetable

	Models: Course, Section, Offering, Timetable, Semester, Evaluations

	Timetable generation and all models required for timetable representation.












            

          

      

      

    

  

    
      
          
            
  
Learning The Stack


Note

Learning a new thing can be scary, especially when all you have are some docs and a
massive code base to learn from. That’s why we are here to help you learn, build,
and contribute. Ask us questions at our Discord [https://discord.gg/txYbphsAV7]!




Our Stack








	Component

	Technology

	Style/Methodology





	Database

	PostgreSQL

	Django ORM



	Backend Framework

	Django

	pycodestyle/Black



	Frontend Framework

	React/Redux

	ESLint/Prettier



	CSS Framework

	SCSS

	BEM/Airbnb









Tutorials and Resources


Learning the Backend

Django is a Python Web framework that provides a huge number of tools for web
developers to quickly write scalable code with minimal configuration. It is used all
over the tech industry by companies like Spotify, Instagram, YouTube, and DropBox!

Writing your first Django app [https://docs.djangoproject.com/en/3.2/intro/tutorial01/] is the official Django
tutorial. It is top notch! The official documentation can be found at the same url and
provides high quality information about how to build with this modern web framework. For
example, here’s the documentation on making queries with Django [https://docs.djangoproject.com/en/3.2/topics/db/queries/].




Learning React/Redux

React is a Javascript library created by Facebook for building user interfaces. It
allows developers to make encapsulated components that can be written once and used
anywhere.

Redux is state container that makes React development easier to manage long term!

The official docs are the go-to: React Basics [https://reactjs.org/docs/hello-world.html], React Hooks [https://reactjs.org/docs/hooks-intro.html], Redux & Redux Toolkit [https://redux.js.org/tutorials/index], and TypeScript [https://www.typescriptlang.org/docs/]. We suggest going through the step-by-step
React tutorial rather than the practical tutorial because the practical tutorial is done
with class-based components, but we prefer functional components.

If you’re looking for something more structured, one suggestion is this Udemy
course [https://www.udemy.com/course/react-the-complete-guide-incl-redux/], which
covers functional React, Redux concepts, TypeScript, and more.

Ultimately, the best practice will be to create a small project using npx
create-react-app my-app --template redux-typescript and going from there. You will
become much more familiar with all of the concepts when you try to work through it
yourself.




Learning CSS/SCSS

The most important step is to learn the CSS basics [https://www.w3schools.com/css/].

With that, you can dive into SCSS [http://sass-lang.com/guide], a css preprocesor.

For development, we use the BEM methedology (learn about BEM here! [http://getbem.com/introduction/]) and the Airbnb style guide [https://github.com/airbnb/css].




Learning Scraping/Parsing

Coming soon!









            

          

      

      

    

  

    
      
          
            
  
How to Contribute

Contributing to Semester.ly follows the following simple workflow:



	Create a Branch


	Make Changes


	Clean Up Changes








Create a Branch

Make sure you have followed all of the instructions in Installation to set up your local
repository and upstream remote.

We follow the Gitflow workflow [https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow]; our
main branch is prod, and our develop branch is develop. The general gist is that
for anything new, you want to branch off of develop and name your branch
feature/your-branch-name. Two other conventions we have is for bug fixes we use
fix/your-branch-name, and for refactoring we use refactor/your-branch-name. In
the case you need to fix something that was just released, and it needs to go straight
to production, then branch off of prod and name your branch
hotfix/your-branch-name.

To stay up to date with upstream/develop, you’ll want to git pull whenever you’re
starting a new branch. You may need to git fetch upstream first.

git checkout develop
git pull upstream develop





Then, you’ll want to create a new branch.

git checkout -b <your-branch-name>








Make Changes

After you’ve made edits, git add your files, then commit. One way to do this:

git add <path_to_file>
git commit -m "Topic: Message"
git push --set-upstream origin your-branch-name






Note

It is preferred that you follow the commit message convention of “Topic: Message”.
This helps when we are browsing through commits so we can quickly identify what each
commit was about.
Messages should be in the imperative mood, as if you’re telling someone what to
do. If it helps, you are encouraged to include the how/why -
“Evaluation list: Duplicate state to avoid modifying redux state”.
Furthermore, try to keep commits to “one” change at a time and commit often.



From here, you should be prompted to create a new pull request (PR). Ctrl + Left Click to
open the link. From there, add a short description on what your PR does and how/why you
did it, and then create the PR. If your PR is ready for review, add a reviewer as well.


Note

What If Upstream Has Changed? If merging upstream into your branch does not
cause any conflicts, using rebase is a good option.

git pull --rebase upstream develop
git push origin your-branch-name





However, if there are merge conflicts, I suggest creating an alternate branch off of
your branch and then merging upstream, fixing any conflicts, and then merging back
into your branch. Although more complicated, this saves you from messing up the work
on your branch if the merge conflicts aren’t easily resolved, or you make a mistake
while resolving the conflicts.

git checkout develop
git pull upstream
git checkout your-branch-name
git checkout -b merge-develop
git merge develop
(Fix merge conflicts, git add + git commit)
git checkout your-branch-name
git merge merge-develop
git push










Clean Up Changes

We have GitHub workflows that check your changes and run them against our automated
tests. While the workflow is building, we have a few other workflows that check the
style and formatting of your code, and they will run more quickly than the build flows.
Take this time to fix any formatting or linting issues should these tests fail. Refer to
the Style Guide to learn more about our code guidelines.


Note

A PR must pass a few checks before it can be merged.

✅ LGTM: Before your PR is merged, you’ll need to pass a peer review to ensure
that all the changes are clean and high quality. Usually, you’ll get an “LGTM” or a
few minor edits will be requested. This helps us maintain a quality code base and
helps contributors learn and grow as engineers!

✅ PR Body: Your pull request should reference a git issue if a related issue has
been created. Additionally, it must provide an in depth description of why the
changes were made, what they do, and how they do it.

✅ Tests & Builds Pass: All tests and builds, as run by Github Actions, must pass.

✅ Linting Satisfied: All files must successfully pass our code style checks.

npx prettier "**/*.{js,jsx,ts,tsx}" --write
eslint . --ext .js,.jsx,.ts,.tsx --fix
black .













            

          

      

      

    

  

    
      
          
            
  
Style Guide


Javascript/Typescript Style Guide


	We follow the ESLint style guideline as configured in our .eslintrc.js file.


	We format our frontend code using Prettier. Line length is configured to 88, like the
backend.


	Use PascalCase for React components, camelCase for everything else.


	When creating new components, make them functional components.


	When adding Redux state, make them slices.




As you can see, we are shifting towards using functional React components and Redux
Toolkit with TypeScript. As such, all new features are expected to use these
technologies. If you find that you can achieve what you are trying to do more easily by
refactoring a class-based component to a functional component, or a reducer to a slice,
you are encouraged to do so.




Python Style Guide

1. We follow the pycodestyle style guide for Python, with the exception that the
max-line-length is 88 instead of 79. This is to comply with the default settings of the
autoformatter black.

2. Use snake_case for variable names and functions. Use PascalCase for classes. Use
f-strings over %s strings or .format().


	Use type annotations when the type of a variable is ambiguous.




4. If possible, helper functions go after the function they appear in. Do not put them
before the method as is commonly done in languages like C.







            

          

      

      

    

  

    
      
          
            
  
Add a School

Adding a new school is easy and can be done in a few simple steps:



	Run the Scaffolder


	Develop the Parser


	Parse and Test








Run the Scaffolder

Running the makeschool command will create a directory for your school, creating a configuration file, a stub for the parser, etc. Run the following for your school:

python manage.py makeschool --name "University of Toronto" --code "uoft" --regex "([A-Z]{2,8}\\s\\d{3})"





Don’t forget to add this new school to your /etc/hosts! (Check here for a reminder on how: Installation)




Develop the Parser


Note

Notify us if you intend to add a school! Create a GitHub issue with the tag new_school. We can help you out and lend a hand while also keeping track of who’s working on what!



The scaffolder created the stub of your parser. It provides the start function and two outer loops that iterate over each provided term and year. Your goal is to fill the inside of this so that for each year and term, you collect the course data for that term/year.

What this boils down to is the following template:

for year in years:
    for term in terms:

        departments = get_departments(term, year)

        for department in departments:

            courses = get_courses(department)

            for course in courses:
                self.ingestor['course_code'] = ...
                self.ingestor['department'] = ...
                self.ingestor['description'] = ...
                ...
                self.ingestor.ingest_course()

                for section in sections:
                    self.ingestor['section_code'] = ...
                    self.ingestor['section_type'] = ...
                    self.ingestor['year'] = ...
                    self.ingestor['term'] = ...
                    ...
                    self.ingestor.ingest_section()

                    for meeting in meetings:
                        ...
                        self.ingestor.ingest_meeting()






Breaking it down


The code starts out by getting the departments. It doesn’t have to, but often it is easiest to go department by department. The parser then collects the courses for that department. We will talk about how it does this in How To Fill The Ingestor.

For each course, the parser fills the ingestor with the fields related to the course (e.g. description, the course code). Once complete, it calls ingest_course to execute the creation of the course.

It then repeats this process for the sections belonging to that course, and for each section, the meetings (individual meeting times) belonging to the section.

Everything else is handled by the BaseParser and the ingestor for you.







How To Fill The Ingestor

As shown by the code sample above, filling the ingestor is as easy as filling a python dictionary. The only question that remains is how to collect the data to fill it with.

The answer is by pulling it from the internet of course! Luckily we have a tool called the Requester which helps developers like you to request information from a web course catalogue or API.




Using the Requester

By inheriting from the BaseParser, your parser comes with its own requester that can be used like this:

markup = self.requester.get('www.siteorapi.com')





or:

markup = self.requester.post('www.siteorapi.com', data=form)





It will automatically return a marked-up version of the data returned by the request (automatically detecting JSON/XML/HTML).


Note

The requester will maintain a session [http://docs.python-requests.org/en/master/user/advanced/] for you, making sure the proper cookies are stored and sent with all future requests. It also randomizes the user agent [https://pypi.python.org/pypi/fake-useragent]. Future updates will automatically parallelize and throttle requests (a great project to contribute to the data pipeline).






Parsing JSON

In the event that your source of course data returns JSON, life is easy. You can find the fields and pull them out by simply treating the JSON as a python dictionary when the requester returns it.




Parsing HTML (or XML)

If, instead, your site is marked up with HTML, we use BeautifulSoup4 (BS4) [https://www.crummy.com/software/BeautifulSoup/bs4/doc/] to find certain divs and map the data inside of those divs to the fields of the ingestor.

Let’s say the HTML looks like this:

<body>
    <div class="course-wrapper">
        <h1>EN.600.123</h1>
        <h4>Some Course Name</h4>
        <a href="urltosectiondata">More Info</a>
        ....
    </div>
    <div class="course-wrapper">
        ...
    </div>
    ...
</body>





We can then write the get courses function as follows:

def get_courses(self, department):
    soup = self.requester.get('urltothisdepartment.com')
    return soup.find_all(class_='course-wrapper')





And we can fill the ingestor based on these courses by:

courses = self.get_courses(department)
for course in courses:
    self.ingestor['course_code'] = course.find('h4').get_text()
    ...





To get section data, we can follow the “More Info” link and parse the resulting HTML in the same way:

section_html = self.requester.get(course.find('a')['href'])






Note

You can learn more about BS4 by reading their documentation [https://www.crummy.com/software/BeautifulSoup/bs4/doc/] . It is an extensive library that provides many excellent utilities for parsing HTML/XML.








Parse and Test

When you’re ready you can go ahead and run your parser. You can do this by:

python manage.py ingest [SCHOOL_CODE]





Replacing SCHOOL_CODE with whatever your school’s code (e.g. jhu) is. This will start the ingestion process, creating a file data/courses.json in your school’s directory.

If, along the way, your ingestion fails to validate, the ingestor will throw useful errors to let you know how or why!

Once it runs to completion, you can digest the JSON, entering it into the database by running:

python manage.py digest [SCHOOL_CODE]






Note

To learn more, checkout the Data Pipeline Documentation









            

          

      

      

    

  

    
      
          
            
  
How to Run & Write Tests


Running Tests


Frontend

Run all tests:

npm test





Run single test:

npm test -- static/js/redux/__tests__/schema.test.js








Backend

Run all tests:

python manage.py test





Run all tests for a single app:

python manage.py test timetable





Run single test suite:

python manage.py test timetable.tests.UrlsTest





Run single test case:

python manage.py test timetable.tests.UrlTest.test_urls_call_correct_views





Run tests without resetting db:

python manage.py test -k





Our current test runner will only run db setup if the tests you’re running
touch the db.






Writing Tests


Unit Tests

Contributors are encouraged to write unit tests for changed and new code.
By separating out logic into simple pure functions, you can isolate the
behavior you care about in your unit tests and not worry about testing
for side effects. Following the design principles outlined in the resources from
the Learning The Stack section helps with this. For example, extracting all code
that extract information from the state into selectors, which are pure functions
that take the state (or some part of it) as input and output some data, will
make it easy to test and change state-related behavior.
Sometimes you may want to test behavior that can’t be extracted into a pure
function or that touches external interfaces. There are a number of strategies
you can use in these cases.




Integration Tests

In the frontend, for testing the logic for rendering a component, look into
snapshot tests. For testing async (thunk) action creators, our current tests
create a store with desired initial state, dispatch the action, and then check that the action
had the desired effect on the state. Backend requests are mocked using the nock
library.

For testing views, we use django’s built-in client to send requests to the backend.
It’s also possible to use django’s request factory to create requests to provide
directly as input to your views.




End to End Tests

As the name implies, end to end tests test the entire app at once by simulating
a semesterly user. When writing or changing end to end tests, it is recommended
to familiarize yourself with the methods provided in SeleniumTestCase, which
make it easy to perform certain actions on the app.









            

          

      

      

    

  

    
      
          
            
  
Backend Documentation



	Timetable App
	Models

	Views

	Serializers

	Utils





	Courses App
	Views

	Utils

	Serializers





	Student App
	Models

	Views

	Utils

	Serializers





	Searches App
	Views

	Utils





	Agreement App
	Models





	E2E Test Utils

	Helpers App
	Decorators

	Mixins





	Authentication Pipeline
	Views

	Utils













            

          

      

      

    

  

    
      
          
            
  
Timetable App

The timetable app is the core application that has been a part of Semester.ly since our very first release. The timetable app does the heavy lifting for timetable generation, sharing, and viewing.


Models


	
class timetable.models.Course(*args, **kwargs)

	Represents a course at a school, made unique by its course code.
Courses persist across semesters and years. Their presence in a semester or year
is indicated by the existence of sections assigned to that course for that semester
or year. This is why a course does not have fields like professor, those varies.

The course model maintains only attributes which tend not to vary across semesters
or years.

A course has many Section which a student can enroll in.


	
school

	this course’s school’s code


	Type

	CharField










	
code

	the course code without indication of section
(e.g. EN.600.100)


	Type

	CharField










	
name

	the general name of the course (E.g. Calculus I)


	Type

	CharField










	
description

	the explanation of the content of the course


	Type

	TextField










	
notes

	usually notes pertaining to registration
(e.g. Lab Fees)


	Type

	TextField, optional










	
info

	similar to notes


	Type

	TextField, optional










	
unstopped_description

	automatically generated description
without stopwords


	Type

	TextField










	
campus

	an indicator for which campus the course is
taught on


	Type

	CharField, optional










	
prerequisites

	courses required before taking this
course


	Type

	TextField, optional










	
corequisites

	courses required concurrently with
this course


	Type

	TextField, optional










	
exclusions

	reasons why a student would not be able
to take this


	Type

	TextField, optional










	
num_credits

	the number of credit hours this course is worth


	Type

	FloatField










	
areas

	list of all degree areas this course satisfies.


	Type

	Arrayfield










	
department

	department offering course
(e.g. Computer Science)


	Type

	CharField










	
level

	indicator of level of course
(e.g. 100, 200, Upper, Lower, Grad)


	Type

	CharField










	
cores

	core areas satisfied by this course


	Type

	CharField










	
geneds

	geneds satisfied by this course


	Type

	CharField










	
related_courses

	courses
computed similar to this course


	Type

	ManyToManyField of Course, optional










	
same_as

	If this course is the same as another course,
provide Foreign key


	Type

	ForeignKey










	
exception DoesNotExist

	




	
exception MultipleObjectsReturned

	




	
get_avg_rating()

	Calculates the avg rating for a course, -1 if no ratings. Includes all courses
that are marked as the same by the self.same_as field on the model instance.


	Returns

	the average course rating



	Return type

	(float [https://docs.python.org/3/library/functions.html#float])










	
get_reactions(student=None)

	Return a list of dicts for each type of reaction (by title) for this course.
Each dict has:

title: the title of the reaction

count: number of reactions with this title that this course has received

reacted: True if the student provided has given a reaction with this title










	
class timetable.models.CourseIntegration(id, course, integration, json)

	
	
exception DoesNotExist

	




	
exception MultipleObjectsReturned

	








	
class timetable.models.Evaluation(*args, **kwargs)

	A review of a course represented as a score out of 5, a summary/comment, along
with the professor and year the review is in subject of.


	
course

	the course this evaluation belongs to


	Type

	ForeignKey to Course










	
score

	score out of 5.0


	Type

	FloatField










	
summary

	text with information about why the rating was given


	Type

	TextField










	
professor

	the professor(s) this review pertains to


	Type

	CharField










	
year

	the year of the review


	Type

	CharField










	
course_code

	a string of the course code, along with section
indicator


	Type

	Charfield










	
exception DoesNotExist

	




	
exception MultipleObjectsReturned

	








	
class timetable.models.Integration(id, name)

	
	
exception DoesNotExist

	




	
exception MultipleObjectsReturned

	








	
class timetable.models.Offering(*args, **kwargs)

	An Offering is the most granular part of the Course heirarchy. An offering
may be looked at as the backend equivalent of a single slot on a timetable.
For each day/time which a section meets, an offering is created.abs


	
section

	the section which is the parent of this offering


	Type

	ForeignKey to Section










	
day

	the day the course is offered (single character M,T,W,R,F,S,U)


	Type

	CharField










	
time_start

	the time the slot starts in 24hrs time in the format (HH:MM) or (H:MM)


	Type

	CharField










	
time_end

	the time it ends in 24hrs time in the format (HH:MM) or (H:MM)


	Type

	CharField










	
location

	the location the course takes place, defaulting to TBA if not provided


	Type

	CharField, optional










	
exception DoesNotExist

	




	
exception MultipleObjectsReturned

	








	
class timetable.models.Section(*args, **kwargs)

	Represents one (of possibly many) choice(s) for a student to enroll in a
Course for a specific semester. Since this model is specific to a semester,
it contains enrollment data, instructor information, etc.

A section can come in different forms. For example, a lecture which is required
for every student. However, it can also be a tutorial or practical. During
timetable generation we allow a user to select one of each, and we can automatically
choose the best combination for a user as well.

A section has many offerings related to it. For example, section 1 of a
Course could have 3 offerings (one that meets each day: Monday, Wednesday,
Friday). Section 2 of a Course could have 3 other offerings (one that meets
each: Tuesday, Thursday).


	
course

	The course this section belongs to


	Type

	Course










	
meeting_section

	the name of the section
(e.g. 001, L01, LAB2)


	Type

	CharField










	
size

	the capacity of the course (the enrollment cap)


	Type

	IntegerField










	
enrolment

	the number of students registered so far


	Type

	IntegerField










	
waitlist

	the number of students waitlisted so far


	Type

	IntegerField










	
waitlist_size

	the max size of the waitlist


	Type

	IntegerField










	
section_type

	the section type, example ‘L’ is lecture, ‘T’ is tutorial, P is practical


	Type

	CharField










	
instructors

	comma seperated list of instructors


	Type

	CharField










	
semester

	the semester for the section


	Type

	ForeignKey to Semester










	
was_full

	whether the course was full during the last
parse


	Type

	BooleanField










	
course_section_id

	the id of the section when sending data
to SIS


	Type

	IntegerField










	
exception DoesNotExist

	




	
exception MultipleObjectsReturned

	








	
class timetable.models.Semester(*args, **kwargs)

	Represents a semester which is composed of a name (e.g. Spring, Fall)
and a year (e.g. 2017).


	
name

	the name (e.g. Spring, Fall)


	Type

	CharField










	
year

	the year (e.g. 2017, 2018)


	Type

	CharField










	
exception DoesNotExist

	




	
exception MultipleObjectsReturned

	










Views


	
class timetable.views.TimetableLinkView(**kwargs)

	A subclass of FeatureFlowView (see Flows Documentation) for the
viewing of shared timetable links. Provides the logic for preloading
the shared timetable into initData when a user hits the corresponding
url. The frontend can then act on this data to load the shared timetable
for viewing.

Additionally, on POST provides the functionality for the creation of
shared timetables.


	
get_feature_flow(request, slug)

	Overrides FeatureFlowView get_feature_flow method. Takes the slug,
decrypts the hashed database id, and either retrieves the corresponding
timetable or hits a 404.






	
post(request)

	Creates a SharedTimetable and returns the hashed database id
as the slug for the url which students then share and access.










	
class timetable.views.TimetableView(**kwargs)

	This view is responsible for responding to any requests dealing with the
generation of timetables and the satisfaction of constraints provided by
the frontend/user.


	
post(request)

	Generate best timetables given the user’s selected courses












Serializers


	
class timetable.serializers.DisplayTimetableSerializer(*args, **kwargs)

	




	
class timetable.serializers.EventSerializer(*args, **kwargs)

	




	
class timetable.serializers.PersonalTimeTablePreferencesSerializer(*args, **kwargs)

	




	
class timetable.serializers.SlotSerializer(*args, **kwargs)

	






Utils


	
class timetable.utils.DisplayTimetable(slots, has_conflict, show_weekend, name='', events=None, id=None)

	Object that represents the frontend’s interpretation of a timetable.


	
classmethod from_model(timetable)

	Create DisplayTimetable from Timetable instance.










	
class timetable.utils.Slot(course, section, offerings, is_optional, is_locked)

	
	
course

	Alias for field number 0






	
is_locked

	Alias for field number 4






	
is_optional

	Alias for field number 3






	
offerings

	Alias for field number 2






	
section

	Alias for field number 1










	
class timetable.utils.Timetable(courses, sections, has_conflict)

	
	
courses

	Alias for field number 0






	
has_conflict

	Alias for field number 2






	
sections

	Alias for field number 1










	
timetable.utils.add_meeting_and_check_conflict(day_to_usage, new_meeting, school)

	Takes a @day_to_usage dictionary and a @new_meeting section and
returns a tuple of the updated day_to_usage dict and a boolean
which is True if conflict, False otherwise.






	
timetable.utils.can_potentially_conflict(course_1_date_start, course_1_date_end, course_2_date_start, course_2_date_end)

	Checks two courses start & end dates to see whether they can overlap and
hence potentially conflict. If any of the values are passed as None it will
automatically consider that they can potentially conflict. Input type is
string but has to be in a reasonable date format.


	Parameters

	
	{[string]} -- [course 1 start date in a reasonable date format] (course_1_date_start) – 


	{[string]} -- [course 1 end date in a reasonable date format] (course_1_date_end) – 


	{[string]} -- [course 2 start date in a reasonable date format] (course_2_date_start) – 


	{[string]} -- [course 2 end date in a reasonable date format] (course_2_date_end) – 






	Returns

	[bool] – [True if if dates ranges of course 1 and 2 overlap, otherwise False]










	
timetable.utils.courses_to_slots(courses, locked_sections, semester, optional_course_ids)

	Return a list of lists of Slots. Each Slot sublist represents the list of
possibilities for a given course and section type, i.e. a valid timetable consists
of any one slot from each sublist.






	
timetable.utils.find_slots_to_fill(start, end, school)

	Take a @start and @end time in the format found in the coursefinder (e.g. 9:00, 16:30),
and return the indices of the slots in thet array which represents times from 8:00am
to 10pm that would be filled by the given @start and @end. For example, for uoft
input: ‘10:30’, ‘13:00’
output: [5, 6, 7, 8, 9]






	
timetable.utils.get_current_semesters(school)

	List of semesters ordered by academic temporality.

For a given school, get the possible semesters ordered by the most recent
year for each semester that has course data, and return a list of
(semester name, year) pairs.






	
timetable.utils.get_day_to_usage(custom_events, school)

	Initialize day_to_usage dictionary, which has custom events blocked out.






	
timetable.utils.get_hour_from_string_time(time_string)

	Get hour as an int from time as a string.






	
timetable.utils.get_hours_minutes(time_string)

	Return tuple of two integers representing the hour and the time
given a string representation of time.
e.g. ‘14:20’ -> (14, 20)






	
timetable.utils.get_minute_from_string_time(time_string)

	Get minute as an int from time as a string.






	
timetable.utils.get_time_index(hours, minutes, school)

	Take number of hours and minutes, and return the corresponding time slot index






	
timetable.utils.get_xproduct_indicies(lists)

	Takes a list of lists and returns two lists of indicies needed to iterate
through the cross product of the input.






	
timetable.utils.slots_to_timetables(slots, school, custom_events, with_conflicts, show_weekend)

	Generate timetables in a depth-first manner based on a list of slots.






	
timetable.utils.update_locked_sections(locked_sections, cid, locked_section, semester)

	Take cid of new course, and locked section for that course
and toggle its locked status (ie if was locked, unlock and vice versa.











            

          

      

      

    

  

    
      
          
            
  
Courses App

The courses app deals with the accesing course information, the sharing of courses, and the rendering of the course/all course pages.


Views


	
class courses.views.CourseDetail(**kwargs)

	View that handles individual course entities.


	
get(request, sem_name, year, course_id)

	Return detailed data about a single course. Currently used for course modals.










	
class courses.views.CourseModal(**kwargs)

	A FeatureFlowView for loading a course share link
which directly opens the course modal on the frontend. Therefore,
this view overrides the get_feature_flow method to fill intData
with the detailed course json for the modal.abs

Saves a SharedCourseView for analytics purposes.


	
get_feature_flow(request, code, sem_name, year)

	Return data needed for the feature flow for this HomeView.
A name value is automatically added in .get() using the feature_name class variable.
A semester value can also be provided, which will change the initial semester state of
the home page.










	
class courses.views.SchoolList(**kwargs)

	
	
get(request, school)

	Provides the basic school information including the schools
areas, departments, levels, and the time the data was last updated










	
courses.views.all_courses(request)

	Generates the full course directory page. Includes links to all courses
and is sorted by department.






	
courses.views.course_page(request, code)

	Generates a static course page for the provided course code and
school (via subdomain). Completely outside of the React framework
purely via Django templates.






	
courses.views.get_classmates_in_course(request, school, sem_name, year, course_id)

	Finds all classmates for the authenticated user who also have a
timetable with the given course.








Utils


	
courses.utils.get_sections_by_section_type(course, semester)

	Return a map from section type to Sections for a given course and semester.






	
courses.utils.sections_are_filled(sections)

	Return True if all sections are filled beyond their max enrollment.








Serializers


	
class courses.serializers.CourseSerializer(*args, **kwargs)

	Serialize a Course into a dictionary with detailed information about the course, and
all related entities (eg Sections). Used for search results and course modals.

Takes a context with parameters:
school: str (required)
semester: Semester (required)
student: Student (optional)


	
get_evals(course)

	Append all eval instances with a flag designating whether there exists another eval for the course with the same term+year values.
:returns: List of modified evaluation dictionaries (added flag ‘unique_term_year’)






	
get_popularity_percent(course)

	Return percentage of course capacity that is filled by registered
students.






	
get_regexed_courses(course)

	Given course data, search for all occurrences of a course code in the course
description and prereq info and return a map from course code to course name for
each course code.










	
class courses.serializers.EvaluationSerializer(*args, **kwargs)

	




	
class courses.serializers.SectionSerializer(*args, **kwargs)

	




	
class courses.serializers.SemesterSerializer(*args, **kwargs)

	




	
courses.serializers.get_section_dict(section)

	Returns a dictionary of a section including indicator of whether that section is
filled











            

          

      

      

    

  

    
      
          
            
  
Student App

The Student model is an abstraction over the Django user to provide us with a more full user profile including information pulled from social authentication via Google and/or Facebook (and/or Microsoft JHED at JHU). This app handles utilities for overriding the Python Social Auth authentication pipeline, while also handling the functionality for logged in users.

The student app also encapsulates all models tied directly to a user like PersonalTimetables, PersonalEvents, Reactions, and notification tokens.


Models

Models pertaining to Students.


	
class student.models.PersonalEvent(*args, **kwargs)

	A custom event that has been saved to a user’s PersonalTimetable so that it persists
across refresh, device, and session. Marks when a user is not free. Courses are
scheduled around it.


	
exception DoesNotExist

	




	
exception MultipleObjectsReturned

	








	
class student.models.PersonalTimetable(*args, **kwargs)

	Database object representing a timetable created (and saved) by a user.

A PersonalTimetable belongs to a Student, and contains a list of Courses and
Sections that it represents.


	
exception DoesNotExist

	




	
exception MultipleObjectsReturned

	








	
class student.models.Reaction(*args, **kwargs)

	Database object representing a reaction to a course.

A Reaction is performed by a Student on a Course, and can be one of REACTION_CHOICES
below. The reaction itself is represented by its title field.


	
exception DoesNotExist

	




	
exception MultipleObjectsReturned

	








	
class student.models.RegistrationToken(*args, **kwargs)

	A push notification token for Chrome notification via Google Cloud Messaging


	
exception DoesNotExist

	




	
exception MultipleObjectsReturned

	








	
class student.models.Student(*args, **kwargs)

	Database object representing a student.

A student is the core user of the app. Thus, a student will have a
class year, major, friends, etc. An object is only created for the
user if they have signed up (that is, signed out users are not
represented by Student objects).


	
exception DoesNotExist

	




	
exception MultipleObjectsReturned

	










Views


	
class student.views.ClassmateView(**kwargs)

	Handles the computation of classmates for a given course, timetable, or simply
the count of all classmates for a given timetable.


	
get(request, sem_name, year)

	
	Returns

	If the query parameter ‘count’ is present
Information regarding the number of friends only:

{
    "id": Course with the most friends,
    "count": The maximum # of friends in a course,
    "total_count": the total # in all classes on timetable,
}





If the query parameter course_ids is present a list of dictionaries
representing past classmates and current classmates. These are students who
the authenticated user is friends with and who has social courses enabled.:

[{
    "course_id":6137,
    "past_classmates":[...],
    "classmates":[...]
}, ...]





Otherwise a list of friends and non-friends alike who have social_all
enabled to be displayed in the “find-friends” modal. Sorted by the number
courses the authenticated user shares.:

[{
    "name": "...",
    "is_friend": Whether or not the user is current user's friend,
    "profile_url": link to FB profile,
    "shared_courses": [...],
    "peer": Info about the user,
}, ...]




















	
class student.views.PersonalEventView(**kwargs)

	




	
class student.views.ReactionView(**kwargs)

	Manages the creation of Reactions to courses.


	
post(request)

	Create a Reaction for the given course id, with the given title matching
one of the possible emojis. If already present, remove that reaction.










	
class student.views.UserTimetablePreferenceView(**kwargs)

	Used to update timetable preferences


	
get_queryset()

	Get the list of items for this view.
This must be an iterable, and may be a queryset.
Defaults to using self.queryset.

This method should always be used rather than accessing self.queryset
directly, as self.queryset gets evaluated only once, and those results
are cached for all subsequent requests.

You may want to override this if you need to provide different
querysets depending on the incoming request.

(Eg. return a list of items that is specific to the user)






	
serializer_class

	alias of timetable.serializers.PersonalTimeTablePreferencesSerializer










	
class student.views.UserTimetableView(**kwargs)

	Responsible for the viewing and managing of all Students’
PersonalTimetable.


	
delete(request, sem_name, year, tt_name)

	Deletes a PersonalTimetable by name/year/term.






	
get(request, sem_name, year)

	Returns student’s personal timetables






	
post(request)

	Duplicates a personal timetable if a ‘source’ is provided. Else, creates
a personal timetable based on the courses, custom events, preferences, etc.
which are provided.






	
update_events(tt, events)

	Replace tt’s events with input events. Deletes all old events to avoid
buildup in db










	
class student.views.UserView(**kwargs)

	Handles the accessing and mutating of user information and preferences.


	
delete(request)

	Delete this user and all of its data






	
get(request)

	Renders the user profile/stats page which indicates all of a student’s
reviews of courses, what social they have connected, whether notificaitons
are enabled, etc.






	
patch(request)

	Updates a user settings to match the corresponding values passed in the
request body. (e.g. social_courses, class_year, major)










	
student.views.accept_tos(request)

	Accepts the terms of services for a user, saving the datetime [https://docs.python.org/3/library/datetime.html#module-datetime] the
terms were accepted.






	
student.views.log_ical_export(request)

	Logs that a calendar was exported on the frotnend and indicates
it was downloaded rather than exported to Google calendar.








Utils


	
student.utils.get_classmates_from_course_id(school, student, course_id, semester, friends=None, include_same_as=False)

	Get’s current and past classmates (students with timetables containing
the provided course ID). Classmates must have social_courses enabled
to be included. If social_sections is enabled, info about what section
they are in is also passed.


	Parameters

	
	school (str [https://docs.python.org/3/library/stdtypes.html#str]) – the school code (e.g. ‘jhu’)


	student (Student) – the student for whom to find classmates


	course_id (int [https://docs.python.org/3/library/functions.html#int]) – the database id for the course


	semester (Semester) – the semester that is current (to check for)


	friends (list [https://docs.python.org/3/library/stdtypes.html#list] of Students) – if provided, does not re-query for friends list, uses provided list.


	include_same_as (bool [https://docs.python.org/3/library/functions.html#bool]) – If provided as true, searches for classmates in any courses marked
as “same as” in the database.













	
student.utils.get_classmates_from_tts(student, course_id, tts)

	Returns a list of classmates a student has from a list
of other user’s timetables. This utility does the leg work
for get_classmates_from_course_id() by taking either a list
of current or past timetables and finding classmates relevant to
that list.

If both students have social_offerings enabled, adds information about
what sections the student is enrolled in on each classmate.






	
student.utils.get_friend_count_from_course_id(student, course_id, semester)

	Computes the number of friends a user has in a given course for a given
semester.

Ignores whether or not those friends have social courses enabled. Never exposes
those user’s names or infromation. This count is used purely to upsell user’s to
enable social courses.






	
student.utils.get_student(request)

	
	Returns

	the student belonging to the authenticated user



	Return type

	(Student)










	
student.utils.get_student_tts(student, school, semester)

	Returns serialized list of a student’s PersonalTimetable objects
ordered by last updated for passing to the frontend.








Serializers


	
class student.serializers.StudentSerializer(*args, **kwargs)

	




	
student.serializers.get_student_dict(school, student, semester)

	Return serialized representation of a student.











            

          

      

      

    

  

    
      
          
            
  
Searches App

Searches app provides a useful, efficient and scalable search backend using basic
techniques of information retrieval.


Views


	
class searches.views.CourseSearchList(**kwargs)

	Course Search List.


	
get(request, query, sem_name, year)

	Return search results.






	
post(request, query, sem_name, year)

	Return advanced search results.












Utils


	
searches.utils.course_name_contains_token(token)

	Returns a query set of courses where tokens are contained in code or name.






	
searches.utils.search(school, query, semester)

	Returns courses that are contained in the name from a query.











            

          

      

      

    

  

    
      
          
            
  
Agreement App

In order to use our system, users must agree to our privacy policy/terms and conditions.

When a user is not logged in, this is done implicitly (no click to accept is required). Out of respect for our users and to be fully transparent, we surface a banner when the user is not logged in to bring this implicity agreement to their attention.

When a user is logged in, the agreement must be explicity. During signup the user is prompted to agree to the terms and must do so in order to continue using the application. If the documents have been updated since the user last agreed, they will be notified of this change and once again asked to agree to the updated terms/policy.


Models


	
class agreement.models.Agreement(*args, **kwargs)

	Database object representing updates to the ToS/privacy policy.


	
exception DoesNotExist

	




	
exception MultipleObjectsReturned

	













            

          

      

      

    

  

    
      
          
            
  
E2E Test Utils


	
class semesterly.test_utils.SeleniumTestCase(*args, **kwargs)

	This test case extends the Django StaticLiveServerTestCase.
It creates a selenium ChromeDriver instance on setUp of each
test. It navigates to the live url for the static live server.
It also provides utilities and assertions for navigating and
testing presence of elements or behavior.


	
img_dir

	Directory to save screenshots on failure.


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
driver

	Chrome WebDriver instance.


	Type

	WebDriver










	
timeout

	Socket default timeout.


	Type

	int [https://docs.python.org/3/library/functions.html#int]










	
add_course(course_idx, n_slots, n_master_slots, by_section='', code=None)

	Adds a course via search results and asserts the corresponding number of slots are found


	Parameters

	
	course_idx (int [https://docs.python.org/3/library/functions.html#int]) – index into the search results corresponding the to course to add


	n_slots (int [https://docs.python.org/3/library/functions.html#int]) – the number of slots expected after add


	n_master_slots (int [https://docs.python.org/3/library/functions.html#int]) – the number of master slots expected after add


	by_section (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – if provided adds the specific section of the course


	code (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – the course code to add, validates presence if provided













	
add_course_from_course_modal(n_slots, n_master_slots)

	Adds a course via the course modal action.
Requires that the course modal be open.






	
allow_conflicts_add(n_slots)

	Allows conflicts via the conflict alert action,
then validates that the course was added






	
assert_custom_event_exists(*, name: str [https://docs.python.org/3/library/stdtypes.html#str], day: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None, location: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None, color: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None, start_time: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None, end_time: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None, credits: Optional[float [https://docs.python.org/3/library/functions.html#float]] = None)

	Asserts that a custom event with the provided fields exists in the current
timetable.


	Parameters

	
	name – Name of the event, can be substring of the actual name


	day – Day of the week, one of “M”, “T”, “W”, “R”, “F”, “S”, “U”


	location – Location of the event, can be substring of the actual name


	color – Color of the event in hex (#F8F6F7), case insensitive


	start_time – Start time of the event as a non zero-padded string (8:00)


	end_time – End time of the event as a non zero-padded string (14:30)


	credits – Number of credits of the event






	Raises

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If the event could not be found.










	
assert_friend_image_found(friend)

	Asserts that the provided friend’s image is found on the page






	
assert_friend_in_modal(friend)

	Asserts that the provided friend’s image is found on the modal






	
assert_invisibility(locator, root=None)

	Asserts the invisibility of the provided element


	Parameters

	
	locator – A tuple of (By.*, ‘indentifier’)


	root (bool [https://docs.python.org/3/library/functions.html#bool], optional) – The root element to search from, root of DOM if None













	
assert_loader_completes()

	Asserts that the semester.ly page loader has completed






	
assert_n_elements_found(locator, n_elements, root=None)

	Asserts that n_elements are found by the provided locator






	
assert_ptt_const_across_refresh()

	Refreshes the browser and asserts that the tuple
version of the personal timetable is equivalent to pre-refresh






	
assert_ptt_equals(ptt)

	Asserts equivalency between the provided ptt tuple and the current ptt






	
assert_slot_presence(n_slots, n_master_slots)

	Assert n_slots and n_master_slots are on the page






	
change_ptt_name(name)

	Changes personal timetable name to the provided title






	
change_term(term, clear_alert=False)

	Changes the term to the provided term by matching the string to the string
found in the semester dropdown on Semester.ly






	
clear_search_query()

	Clears the search box






	
clear_tutorial()

	Clears the tutorial modal for first time users






	
click_off()

	Clears the focus of the driver






	
close_adv_search()

	Closes the advanced search modal






	
close_course_modal()

	Closes the course modal using the (x) button






	
compare_timetable(timetable_name: str [https://docs.python.org/3/library/stdtypes.html#str])

	Activates the compare timetable mode with a timetable of the given name.


	Parameters

	timetable_name – Name of the timetable to compare to, must already exist.






	Pre-condition:
	The timetable dropdown is not clicked.










	
complete_user_settings_basics(major, class_year)

	Completes major/class year/TOS agreement via the welcome modal


	Parameters

	
	major (str [https://docs.python.org/3/library/stdtypes.html#str]) – Student’s major


	class_year (str [https://docs.python.org/3/library/stdtypes.html#str]) – Student’s class year













	
create_custom_event(day: int [https://docs.python.org/3/library/functions.html#int], start_time: int [https://docs.python.org/3/library/functions.html#int], end_time: int [https://docs.python.org/3/library/functions.html#int], show_weekend: bool [https://docs.python.org/3/library/functions.html#bool] = True)

	Creates a custom event using drag and drop assuming custom event mode is off


	Parameters

	
	day – 0-6, 0 is Monday


	start_time – 0 is 8:00A.M, every 1 is 30 mins


	end_time – 0 is 8:00A.M, every 1 is 30 mins


	show_weekend – if weekends are shown













	
create_friend(first_name, last_name, **kwargs)

	Creates a friend of the primary (first) user






	
create_personal_timetable_obj(friend, courses, semester)

	Creates a personal timetable object belonging to the provided user
with the given courses and semester






	
create_ptt(name: str [https://docs.python.org/3/library/stdtypes.html#str] = '', finish_saving: bool [https://docs.python.org/3/library/functions.html#bool] = True)

	Create a personaltimetable with the provided name when provided


	Parameters

	
	name – Name of the personal timetable


	finish_saving – Whether to wait until the personal timetable is saved













	
description(descr)

	A context manager which wraps a group of code and adds details to any exceptions thrown
by the enclosed lines. Upon such an exception, the context manager will also take a screenshot
of the current state of self.driver, writing a PNG to self.img_dir, labeled by the provided
description and a timetstamp.






	
edit_custom_event(old_name: str [https://docs.python.org/3/library/stdtypes.html#str], /, *, name: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None, day: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None, location: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None, color: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None, start_time: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None, end_time: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None, credits: Optional[float [https://docs.python.org/3/library/functions.html#float]] = None)

	Edits the first custom event found with the provided name.


	Parameters

	
	old_name – The name of the event to edit.


	name – The new name to give the event.


	day – The new day of the week, one of “M”, “T”, “W”, “R”, “F”, “S”, “U”.


	location – The new location.


	color – The new color as a hex code (#FF0000).


	start_time – The new start time in military time (8:00).


	end_time – The new end time in military time (13:00).


	credits – The new number of credits.













	
enter_search_query(query)

	Enters the provided query into the search box






	
execute_action_expect_alert(action, alert_text_contains='')

	Executes the provided action, asserts that an alert appears and validates
that the alert text contains the provided string (when provided)






	
exit_compare_timetable()

	Exits the compare timetable mode (pre: already in compare timetable mode)






	
find(locator, get_all=False, root=None, clickable=False, hidden=False) → WebElement | list [https://docs.python.org/3/library/stdtypes.html#list][WebElement]

	Locates element in the DOM and returns it when found.


	Parameters

	
	locator – A tuple of (By.*, ‘indentifier’)


	get_all (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If true, will return list of matching elements


	root (bool [https://docs.python.org/3/library/functions.html#bool], optional) – The root element to search from, root of DOM if None


	clickable (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If true, waits for clickability of element


	hidden (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If true, will allow for hidden elements






	Returns

	The WebElement object returned by self.driver (Selenium)






	Throws:
	RuntimeError: If element is not found or both get_all and clickable is True










	
follow_and_validate_url(url, validate)

	Opens a new window, switches to it, gets the url and validates it
using the provided validating function.


	Parameters

	
	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – the url to follow and validate


	validate (func) – the function which validates the new page













	
follow_share_link_from_slot()

	Click the share link on the slot and follow it then validate the course modal






	
get_custom_event_fields()

	Returns the fields of the currently selected custom event.


	Pre-condition:
	Custom event modal is open.










	
get_elements_as_text(locator)

	Gets elements using self.get and represents them as text






	
get_test_url(school, path='')

	Get’s the live server testing url for a given school.


	Parameters

	
	school (str [https://docs.python.org/3/library/stdtypes.html#str]) – the string for which to create the test url


	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – the appended path to file or page with trailing /






	Returns

	the testing url










	
get_timetable_name()

	Gets the personal timetable name






	
init_screenshot_dir()

	Initializes directory to which we store test failure screenshots






	
lock_course()

	Locks the first course on the timetable






	
login_via_fb(email, password)

	Login user via fb by detecting the Continue with Facebook button in the
signup modal, and then mocking user’s credentials


	Parameters

	
	email (str [https://docs.python.org/3/library/stdtypes.html#str]) – User’s email


	password (str [https://docs.python.org/3/library/stdtypes.html#str]) – User’s password













	
login_via_google(email, password)

	Mocks the login of a user via Google by detecting the Continue with Google
button in the signup modal, and then mocking the user’s credentials.


	Parameters

	
	email (str [https://docs.python.org/3/library/stdtypes.html#str]) – User’s email


	password (str [https://docs.python.org/3/library/stdtypes.html#str]) – User’s password













	
open_and_query_adv_search(query, n_results=None)

	Open’s the advanced search modal and types in the provided query,
asserting that n_results are then returned






	
open_course_modal_from_search(course_idx)

	Opens course modal from search by search result index






	
open_course_modal_from_slot(course_idx)

	Opens the course modal from the nth slot






	
ptt_to_tuple()

	Converts personal timetable to a tuple representation






	
remove_course(course_idx, from_slot=False, n_slots_expected=None)

	Removes a course from the user’s timetable, asserts master slot is removed.


	Parameters

	
	course_idx (int [https://docs.python.org/3/library/functions.html#int]) – the index of the course for which to remove


	from_slot (bool [https://docs.python.org/3/library/functions.html#bool], optional) – if provided, removes via slot rather than via a master_slot


	n_slots_expected (int [https://docs.python.org/3/library/functions.html#int], optional) – if provided, asserts n slots found after removal













	
remove_course_from_course_modal(n_slots_expected=None)

	Removes course via the action within the course’s course modal.
Requires that the course modal be open.






	
save_user_settings()

	Saves user setttings by clicking the button, asserts that the
modal is then invisible






	
search_course(query, n_results)

	Searches a course and asserts n_results elements are found


	Parameters

	
	query (str [https://docs.python.org/3/library/stdtypes.html#str]) – the text to enter into search


	n_results (int [https://docs.python.org/3/library/functions.html#int]) – the number of results to look for. If 0, will look for no
results













	
select_nth_adv_search_result(index, semester)

	Selects the nth advanced search result with a click.
Validates the course modal body displayed in the search reuslts






	
setUp()

	Hook method for setting up the test fixture before exercising it.






	
classmethod setUpClass()

	Hook method for setting up class fixture before running tests in the class.






	
share_timetable(courses)

	Clicks the share button via the top bar and validates it.
Validation is done by following the url and checking the timetable using
the validate_timetable function






	
switch_to_ptt(name)

	Switches to the personal timetable with matching name






	
take_alert_action()

	Takes the action provided by the alert by clicking the button on when visible






	
tearDown()

	Hook method for deconstructing the test fixture after testing it.






	
validate_course_modal()

	Validates the course modal displays proper course data






	
validate_course_modal_body(course, modal, semester)

	Validates the course modal body displays credits, name, code, etc.






	
validate_timeable(courses)

	Validate timetable by checking that for each course provided, a slot exists
with that course’s name and course code.










	
semesterly.test_utils.force_login(user, driver, base_url)

	Forces the login of the provided user setting all cookies.
Function will refresh the provided drivfer and the user will be logged in to that session.






	
class semesterly.test_utils.function_returns_true(func)

	An expectation for checking if the provided function returns true






	
class semesterly.test_utils.n_elements_to_be_found(locator, n_)

	An expectation for checking if the n elements are found
locator, text






	
class semesterly.test_utils.text_to_be_present_in_element_attribute(locator, text_, attribute_)

	An expectation for checking if the given text is present in the element’s
locator, text






	
class semesterly.test_utils.text_to_be_present_in_nth_element(locator, text_, index_)

	An expectation for checking if the given text is present in the nth element’s
locator, text






	
class semesterly.test_utils.url_matches_regex(pattern)

	Expected Condition which waits until the browser’s url matches the provided regex









            

          

      

      

    

  

    
      
          
            
  
Helpers App


Decorators


	
helpers.decorators.validate_subdomain(view_func)

	Validates subdomain, redirecting user to
index iof the school is invalid.








Mixins


	
class helpers.mixins.CsrfExemptSessionAuthentication

	
	
enforce_csrf(request)

	Enforce CSRF validation for session based authentication.










	
class helpers.mixins.FeatureFlowView(**kwargs)

	Template that handles GET requests by rendering the homepage. Feature_name or get_feature_flow()
can be overridden to launch a feature or action on homepage load.


	
get_feature_flow(request, *args, **kwargs)

	Return data needed for the feature flow for this HomeView.
A name value is automatically added in .get() using the feature_name class variable.
A semester value can also be provided, which will change the initial semester state of
the home page.










	
class helpers.mixins.RedirectToSignupMixin

	




	
class helpers.mixins.ValidateSubdomainMixin

	Mixin which validates subdomain, redirecting user to index if the school
is not in ACTIVE_SCHOOLS.











            

          

      

      

    

  

    
      
          
            
  
Authentication Pipeline


Views


	
class authpipe.views.RegistrationTokenView(**kwargs)

	Handles registration and deletion of tokens for maintaining
chrome notifications for users who choose to enable the feature.


	
put(request)

	Creates a notification token for the user.












Utils


	
authpipe.utils.associate_students(strategy, details, response, user, *args, **kwargs)

	Part of our custom Python Social Auth authentication pipeline. If a user
already has an account associated with an email, associates that user with
the new backend.






	
authpipe.utils.check_student_token(student, token)

	Validates a token: checks that it is at most 2 days old and that it
matches the currently authenticated student.






	
authpipe.utils.create_student(strategy, details, response, user, *args, **kwargs)

	Part of the Python Social Auth pipeline which creates a student upon
signup. If student already exists, updates information from Facebook
or Google (depending on the backend).
Saves friends and other information to fill database.











            

          

      

      

    

  

    
      
          
            
  
Flows Documentation


Initalization

When a user loads the home timetable page, FeatureFlowView inside of
timetable.utils is used to handle the request. On initial page load,
the frontend requires some data to initialize the redux state, like
information about the current user, the list of possible semesters for the
school, and the list of student integrations. This initial data is created
inside of the view, and passed in as a single json string in the response
context:


class FeatureFlowView(ValidateSubdomainMixin, APIView):

    def get(self, request, *args, **kwargs):
        # ...gather values for init_data

        init_data = {
            'school': self.school,
            'currentUser': get_user_dict(self.school, self.student, sem),
            'currentSemester': curr_sem_index,
            'allSemesters': all_semesters,
            'uses12HrTime': self.school in AM_PM_SCHOOLS,
            'studentIntegrations': integrations,
            'examSupportedSemesters': map(all_semesters.index,
                                          final_exams_available.get(self.school, [])),

            'featureFlow': dict(feature_flow, name=self.feature_name)
        }

        return render(request, 'timetable.html', {'init_data': json.dumps(init_data)})








which makes the init_data variable accessible in timetable.html. This dumped json string is
then passed to the frontend as a global variable:


<script type="text/javascript">
  var initData = "{{init_data|escapejs}}";
</script>








And then parsed inside of the setup() function in init.jsx


const setup = () => (dispatch) => {
    initData = JSON.parse(initData);

    // pass init data into the redux state
    dispatch({ type: ActionTypes.INIT_STATE, data: initData });

    // do other logic with initData...
};








In other words, the data that the frontend requires is retrieved/calculated inside
of FeatureFlowView, and then passed to the frontend as global variable initData. The frontend
then does any logic it needs based on that data inside of setup() in init.jsx. Any
data that needs to be reused later on from initData should be passed in to the redux state so
that the only global variable uses appear in setup().




Feature Flows

One such piece of data that is passed to the frontend is a featureFlow object. This object is
obtained as the return value of .get_feature_flow(), in addition to a name: self.feature_name
key value pair. In the default implementation, this is just the dictionary {name: None}:


class FeatureFlowView(ValidateSubdomainMixin, APIView):
    feature_name = None

    def get_feature_flow(self, request, *args, **kwargs):
        return {}

    def get(self, request, *args, **kwargs):
        ...
        feature_flow = self.get_feature_flow(request, *args, **kwargs)
        init_data = {
            ...
            'featureFlow': dict(feature_flow, name=self.feature_name)
        }

        return render(request, 'timetable.html', {'init_data': json.dumps(init_data)})








This feature flow value can be used to store any extra information that the frontend needs for any
endpoints that would require initial data to be loaded. For example, when loading a timetable share
link, the frontend also needs to get data about the timetable that is being shared - instead of making
a request to the backend after page load, this information can be provided by the backend directly
by passing this information in the feature flow. It is easy to write new views that pass different
data and have custom logic by subclassing FeatureFlowView and overwriting the
get_feature_flow() method and the .feature_name class attribute.

Having this data all stored under the key
featureFlow in init_data ensures two things. Firstly, it makes explicit that there can only
be one feature flow in play at a time (we can’t load a timetable share link and a course share link
at the same time), and secondly, it allows the frontend to know where to look for any feature data
and act accordingly. In practice, this is done by switching on the name of the feature flow:


const setup = () => (dispatch) => {
    initData = JSON.parse(initData);

    dispatch({ type: ActionTypes.INIT_STATE, data: initData });

    // do other logic with initData...

    dispatch(handleFlows(initData.featureFlow));
};

const handleFlows = featureFlow => (dispatch) => {
    switch (featureFlow.name) {
        case 'SIGNUP':
            dispatch(signupModalActions.showSignupModal());
            break;
        case 'USER_ACQ':
            dispatch(userAcquisitionModalActions.triggerAcquisitionModal());
            break;
        case 'SHARE_TIMETABLE':
            dispatch(timetablesActions.cachedTimetableLoaded());
            dispatch(lockTimetable(featureFlow.sharedTimetable, true, initData.currentUser.isLoggedIn));
            break;
        // ... etc.
        default:
            // unexpected feature name
            break;
  }
};











Example

To help understand how feature flows work, let’s go through the code for an example feature flow:
course sharing. In order to implement course sharing, we want to create a new view/endpoint that
retrieves course data based on the url and passes it to the frontend, which would then update the
redux state and dispatch an action to open the course modal.

We start be defining a new endpoint for this feature flow:


re_path(r'course/(?P<code>.+?)/(?P<sem_name>.+?)/(?P<year>.+?)/*$',
                   courses.views.CourseModal.as_view())








Then we create a new FeatureFlowView for this endpoint which needs to do two things: define
a name for the feature flow, which the frontend look at to determine what action to do, and return
the course data that the frontend needs inside of get_feature_flow():


class CourseModal(FeatureFlowView):
    feature_name = "SHARE_COURSE"

    def get_feature_flow(self, request, code, sem_name, year):
        semester, _ = Semester.objects.get_or_create(name=sem_name, year=year)
        code = code.upper()
        course = get_object_or_404(Course, school=self.school, code=code)
        course_json = get_detailed_course_json(self.school, course, semester, self.student)

        # analytics
        SharedCourseView.objects.create(
            student=self.student,
            shared_course=course,
        ).save()

        return {'sharedCourse': course_json, 'semester': semester}








The frontend can now add a new case in handleFlows to perform logic for this feature flow:


const handleFlows = featureFlow => (dispatch) => {
    switch (featureFlow.name) {
        ...
        case 'SHARE_COURSE':
            dispatch(setCourseInfo(featureFlow.sharedCourse));
            dispatch(fetchCourseClassmates(featureFlow.sharedCourse.id));
            break;
        // ... etc.
        default:
            // unexpected feature name
            break;
  }
};











Shortcuts

Some feature flows don’t require any extra data - they simply require the frontend to know that
a feature flow is being run. For example, for the signup feature flow, loading the page at
/signup should simply open the signup modal, which requires no extra logic or data other than
knowing that it should occur. We could do this by writing a new view:


class SignupModal(FeatureFlowView):
    feature_name = "SIGNUP"








We do not need to implement .get_feature_flow() since the frontend doesn’t require any extra
data and the default implementation already returns an empty dictionary. We can simplify this
by simply declaring this view directly inside of the urls file:


re_path(r'^signup/*$/', FeatureFlowView.as_view(feature_name='SIGNUP')








see https://github.com/noahpresler/semesterly/pull/838 for the
original pull request implementing feature flows







            

          

      

      

    

  

    
      
          
            
  
Data Pipeline Documentation

Semester.ly’s data pipeline provides the infrastructure by which the database is filled with course information. Whether a given University offers an API or an online course catalogue, this pipeline lends developers an easy framework to work within to pull that information and save it in our Django Model format.


General System Workflow



	Pull HTML/JSON markup from a catalogue/API


	Map the fields of the mark up to the fields of our ingestor (by simply filling a python dictionary).


	The ingestor preprocesses the data, validates it, and writes it to JSON.


	Load the JSON into the database.








Note

This process happens automatically via Django/Celery Beat Periodict Tasks [https://github.com/celery/django-celery-beat]. You can learn more about these schedule tasks below (Scheduled Tasks).



Steps 1 and 2 are what we call parsing – an operation that is non-generalizable across all Universities. Often a new parser must be written. For more information on this, read Add a School.




Parsing Library Documentation


Base Parser




Requester




Ingestor


	
exception parsing.library.ingestor.IngestionError(data, *args)

	Bases: parsing.library.exceptions.PipelineError

Ingestor error class.


	
args

	




	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.










	
exception parsing.library.ingestor.IngestionWarning(data, *args)

	Bases: parsing.library.exceptions.PipelineWarning

Ingestor warning class.


	
args

	




	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.










	
class parsing.library.ingestor.Ingestor(config, output, break_on_error=True, break_on_warning=False, display_progress_bar=True, skip_duplicates=True, validate=True, tracker=<parsing.library.tracker.NullTracker object>)

	Bases: dict [https://docs.python.org/3/library/stdtypes.html#dict]

Ingest parsing data into formatted json.

Mimics functionality of dict.


	
ALL_KEYS

	Set of keys supported by Ingestor.


	Type

	set [https://docs.python.org/3/library/stdtypes.html#set]










	
break_on_error

	Break/cont on errors.


	Type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
break_on_warning

	Break/cont on warnings.


	Type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
school

	School code (e.g. jhu, gw, umich).


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
skip_duplicates

	Skip ingestion for repeated definitions.


	Type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
tracker

	Tracker object.


	Type

	library.tracker










	
UNICODE_WHITESPACE

	regex that matches Unicode whitespace.


	Type

	TYPE










	
validate

	Enable/disable validation.


	Type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
validator

	Validator instance.


	Type

	library.validator










	
ALL_KEYS = {'areas', 'campus', 'capacity', 'code', 'coreqs', 'corequisites', 'cores', 'cost', 'course', 'course_code', 'course_name', 'course_section_id', 'credits', 'date', 'date_end', 'date_start', 'dates', 'day', 'days', 'department', 'department_code', 'department_name', 'dept_code', 'dept_name', 'descr', 'description', 'end_time', 'enrollment', 'enrolment', 'exclusions', 'fee', 'fees', 'final_exam', 'geneds', 'homepage', 'instr', 'instr_name', 'instr_names', 'instrs', 'instructor', 'instructor_name', 'instructors', 'kind', 'level', 'loc', 'location', 'meeting_section', 'meetings', 'name', 'num_credits', 'offerings', 'pos', 'prereqs', 'prerequisites', 'remaining_seats', 'same_as', 'school', 'school_subdivision_code', 'school_subdivision_name', 'score', 'section', 'section_code', 'section_name', 'section_type', 'sections', 'semester', 'size', 'start_time', 'sub_school', 'summary', 'term', 'time', 'time_end', 'time_start', 'type', 'waitlist', 'waitlist_size', 'website', 'where', 'writing_intensive', 'year'}

	




	
clear() → None.  Remove all items from D.

	




	
copy() → a shallow copy of D

	




	
end()

	Finish ingesting.

Close i/o, clear internal state, write meta info






	
fromkeys(value=None, /)

	Create a new dictionary with keys from iterable and values set to value.






	
get(key, default=None, /)

	Return the value for key if key is in the dictionary, else default.






	
ingest_course()

	Create course json from info in model map.


	Returns

	course



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
ingest_eval()

	Create evaluation json object.


	Returns

	eval



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
ingest_meeting(section, clean_only=False)

	Create meeting ingested json map.


	Parameters

	section (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – validated section object



	Returns

	meeting



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
ingest_section(course)

	Create section json object from info in model map.


	Parameters

	course (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – validated course object



	Returns

	section



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
items() → a set-like object providing a view on D’s items

	




	
keys() → a set-like object providing a view on D’s keys

	




	
pop(k[, d]) → v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised






	
popitem()

	Remove and return a (key, value) pair as a 2-tuple.

Pairs are returned in LIFO (last-in, first-out) order.
Raises KeyError if the dict is empty.






	
setdefault(key, default=None, /)

	Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.






	
update([E, ]**F) → None.  Update D from dict/iterable E and F.

	If E is present and has a .keys() method, then does:  for k in E: D[k] = E[k]
If E is present and lacks a .keys() method, then does:  for k, v in E: D[k] = v
In either case, this is followed by: for k in F:  D[k] = F[k]






	
values() → an object providing a view on D’s values

	










Validator


	
exception parsing.library.validator.MultipleDefinitionsWarning(data, *args)

	Bases: parsing.library.validator.ValidationWarning

Duplicated key in data definition.


	
args

	




	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.










	
exception parsing.library.validator.ValidationError(data, *args)

	Bases: parsing.library.exceptions.PipelineError

Validator error class.


	
args

	




	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.










	
exception parsing.library.validator.ValidationWarning(data, *args)

	Bases: parsing.library.exceptions.PipelineWarning

Validator warning class.


	
args

	




	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.










	
class parsing.library.validator.Validator(config, tracker=None, relative=True)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Validation engine in parsing data pipeline.


	
config

	Loaded config.json.


	Type

	DotDict










	
course_code_regex

	Regex to match course code.


	Type

	re [https://docs.python.org/3/library/re.html#module-re]










	
kind_to_validation_function

	Map kind to validation function defined within this class.


	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
KINDS

	Kinds of objects that validator validates.


	Type

	set [https://docs.python.org/3/library/stdtypes.html#set]










	
relative

	Enforce relative ordering in validation.


	Type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
seen

	Running monitor of seen courses and sections


	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
tracker

	
	Type

	parsing.library.tracker.Tracker










	
KINDS = {'config', 'course', 'datalist', 'directory', 'eval', 'final_exam', 'instructor', 'meeting', 'section'}

	




	
static file_to_json(path, allow_duplicates=False)

	Load file pointed to by path into json object dictionary.


	Parameters

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	allow_duplicates (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Allow duplicate keys in JSON.






	Returns

	JSON-compliant dictionary.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
classmethod load_schemas(schema_path=None)

	Load JSON validation schemas.


	NOTE: Will load schemas as static variable (i.e. once per definition),
	unless schema_path is specifically defined.






	Parameters

	schema_path (None [https://docs.python.org/3/library/constants.html#None], str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Override default schema_path










	
static schema_validate(data, schema, resolver=None)

	Validate data object with JSON schema alone.


	Parameters

	
	data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Data object to validate.


	schema – JSON schema to validate against.


	resolver (None [https://docs.python.org/3/library/constants.html#None], optional) – JSON Schema reference resolution.






	Raises

	jsonschema.exceptions.ValidationError – Invalid object.










	
validate(data, transact=True)

	Validation entry/dispatcher.


	Parameters

	data (list [https://docs.python.org/3/library/stdtypes.html#list], dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Data to validate.










	
validate_course(course)

	Validate course.


	Parameters

	course (DotDict) – Course object to validate.



	Raises

	
	MultipleDefinitionsWarning – Course has already been validated in
    same session.


	ValidationError – Invalid course.













	
validate_directory(directory)

	Validate directory.


	Parameters

	directory (str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Directory to validate.
May be either path or object.



	Raises

	ValidationError – encapsulated IOError










	
validate_eval(course_eval)

	Validate evaluation object.


	Parameters

	course_eval (DotDict) – Evaluation to validate.



	Raises

	ValidationError – Invalid evaulation.










	
validate_final_exam(final_exam)

	Validate final exam.

NOTE: currently unused.


	Parameters

	final_exam (DotDict) – Final Exam object to validate.



	Raises

	ValidationError – Invalid final exam.










	
validate_instructor(instructor)

	Validate instructor object.


	Parameters

	instructor (DotDict) – Instructor object to validate.



	Raises

	ValidationError – Invalid instructor.










	
validate_location(location)

	Validate location.


	Parameters

	location (DotDict) – Location object to validate.



	Raises

	ValidationWarning – Invalid location.










	
validate_meeting(meeting)

	Validate meeting object.


	Parameters

	meeting (DotDict) – Meeting object to validate.



	Raises

	
	ValidationError – Invalid meeting.


	ValidationWarning – Description













	
validate_section(section)

	Validate section object.


	Parameters

	section (DotDict) – Section object to validate.



	Raises

	
	MultipleDefinitionsWarning – Invalid section.


	ValidationError – Description













	
validate_self_contained(data_path, break_on_error=True, break_on_warning=False, output_error=None, display_progress_bar=True, master_log_path=None)

	Validate JSON file as without ingestor.


	Parameters

	
	data_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to data file.


	break_on_error (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Description


	break_on_warning (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Description


	output_error (None [https://docs.python.org/3/library/constants.html#None], optional) – Error output file path.


	display_progress_bar (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Description


	master_log_path (None [https://docs.python.org/3/library/constants.html#None], optional) – Description


	break_on_error – 


	break_on_warning – 


	display_progress_bar – 






	Raises

	ValidationError – Description










	
validate_time_range(start, end)

	Validate start time and end time.

There exists an unhandled case if the end time is midnight.


	Parameters

	
	start (str [https://docs.python.org/3/library/stdtypes.html#str]) – Start time.


	end (str [https://docs.python.org/3/library/stdtypes.html#str]) – End time.






	Raises

	ValidationError – Time range is invalid.










	
static validate_website(url)

	Validate url by sending HEAD request and analyzing response.


	Parameters

	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – URL to validate.



	Raises

	ValidationError – URL is invalid.
















Logger


	
class parsing.library.logger.JSONColoredFormatter(fmt=None, datefmt=None, style='%', validate=True)

	Bases: logging.Formatter [https://docs.python.org/3/library/logging.html#logging.Formatter]


	
converter()

	
	localtime([seconds]) -> (tm_year,tm_mon,tm_mday,tm_hour,tm_min,
	tm_sec,tm_wday,tm_yday,tm_isdst)





Convert seconds since the Epoch to a time tuple expressing local time.
When ‘seconds’ is not passed in, convert the current time instead.






	
default_msec_format = '%s,%03d'

	




	
default_time_format = '%Y-%m-%d %H:%M:%S'

	




	
format(record)

	Format the specified record as text.

The record’s attribute dictionary is used as the operand to a
string formatting operation which yields the returned string.
Before formatting the dictionary, a couple of preparatory steps
are carried out. The message attribute of the record is computed
using LogRecord.getMessage(). If the formatting string uses the
time (as determined by a call to usesTime(), formatTime() is
called to format the event time. If there is exception information,
it is formatted using formatException() and appended to the message.






	
formatException(ei)

	Format and return the specified exception information as a string.

This default implementation just uses
traceback.print_exception()






	
formatMessage(record)

	




	
formatStack(stack_info)

	This method is provided as an extension point for specialized
formatting of stack information.

The input data is a string as returned from a call to
traceback.print_stack() [https://docs.python.org/3/library/traceback.html#traceback.print_stack], but with the last trailing newline
removed.

The base implementation just returns the value passed in.






	
formatTime(record, datefmt=None)

	Return the creation time of the specified LogRecord as formatted text.

This method should be called from format() by a formatter which
wants to make use of a formatted time. This method can be overridden
in formatters to provide for any specific requirement, but the
basic behaviour is as follows: if datefmt (a string) is specified,
it is used with time.strftime() to format the creation time of the
record. Otherwise, an ISO8601-like (or RFC 3339-like) format is used.
The resulting string is returned. This function uses a user-configurable
function to convert the creation time to a tuple. By default,
time.localtime() is used; to change this for a particular formatter
instance, set the ‘converter’ attribute to a function with the same
signature as time.localtime() or time.gmtime(). To change it for all
formatters, for example if you want all logging times to be shown in GMT,
set the ‘converter’ attribute in the Formatter class.






	
usesTime()

	Check if the format uses the creation time of the record.










	
class parsing.library.logger.JSONFormatter(fmt=None, datefmt=None, style='%', validate=True)

	Bases: logging.Formatter [https://docs.python.org/3/library/logging.html#logging.Formatter]

Simple JSON extension of Python logging.Formatter.


	
converter()

	
	localtime([seconds]) -> (tm_year,tm_mon,tm_mday,tm_hour,tm_min,
	tm_sec,tm_wday,tm_yday,tm_isdst)





Convert seconds since the Epoch to a time tuple expressing local time.
When ‘seconds’ is not passed in, convert the current time instead.






	
default_msec_format = '%s,%03d'

	




	
default_time_format = '%Y-%m-%d %H:%M:%S'

	




	
format(record)

	Format record message.


	Parameters

	record (logging.LogRecord [https://docs.python.org/3/library/logging.html#logging.LogRecord]) – Description



	Returns

	Prettified JSON string.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
formatException(ei)

	Format and return the specified exception information as a string.

This default implementation just uses
traceback.print_exception()






	
formatMessage(record)

	




	
formatStack(stack_info)

	This method is provided as an extension point for specialized
formatting of stack information.

The input data is a string as returned from a call to
traceback.print_stack() [https://docs.python.org/3/library/traceback.html#traceback.print_stack], but with the last trailing newline
removed.

The base implementation just returns the value passed in.






	
formatTime(record, datefmt=None)

	Return the creation time of the specified LogRecord as formatted text.

This method should be called from format() by a formatter which
wants to make use of a formatted time. This method can be overridden
in formatters to provide for any specific requirement, but the
basic behaviour is as follows: if datefmt (a string) is specified,
it is used with time.strftime() to format the creation time of the
record. Otherwise, an ISO8601-like (or RFC 3339-like) format is used.
The resulting string is returned. This function uses a user-configurable
function to convert the creation time to a tuple. By default,
time.localtime() is used; to change this for a particular formatter
instance, set the ‘converter’ attribute to a function with the same
signature as time.localtime() or time.gmtime(). To change it for all
formatters, for example if you want all logging times to be shown in GMT,
set the ‘converter’ attribute in the Formatter class.






	
usesTime()

	Check if the format uses the creation time of the record.










	
class parsing.library.logger.JSONStreamWriter(obj, type_=<class 'list'>, level=0)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Context to stream JSON list to file.


	
BRACES

	Open close brace definitions.


	Type

	TYPE










	
file

	Current object being JSONified and streamed.


	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
first

	Indicator if first write has been done by streamer.


	Type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
level

	Nesting level of streamer.


	Type

	int [https://docs.python.org/3/library/functions.html#int]










	
type_

	Actual type class of streamer (dict or list).


	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict], list [https://docs.python.org/3/library/stdtypes.html#list]









Examples

>>> with JSONStreamWriter(sys.stdout, type_=dict) as streamer:
...     streamer.write('a', 1)
...     streamer.write('b', 2)
...     streamer.write('c', 3)
{
    "a": 1,
    "b": 2,
    "c": 3
}
>>> with JSONStreamWriter(sys.stdout, type_=dict) as streamer:
...     streamer.write('a', 1)
...     with streamer.write('data', type_=list) as streamer2:
...         streamer2.write({0:0, 1:1, 2:2})
...         streamer2.write({3:3, 4:'4'})
...     streamer.write('b', 2)
{
    "a": 1,
    "data":
    [
        {
            0: 0,
            1: 1,
            2: 2
        },
        {
            3: 3,
            4: "4"
        }
    ],
    "b": 2
}






	
BRACES = {<class 'list'>: ('[', ']'), <class 'dict'>: ('{', '}')}

	




	
enter()

	Wrapper for self.__enter__.






	
exit()

	Wrapper for self.__exit__.






	
write(*args, **kwargs)

	Write to JSON in streaming fasion.

Picks either write_obj or write_key_value


	Parameters

	
	*args – pass-through


	**kwargs – pass-through






	Returns

	return value of appropriate write function.



	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – type_ is not of type list or dict.










	
write_key_value(key, value=None, type_=<class 'list'>)

	Write key, value pair as string to file.

If value is not given, returns new list streamer.


	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Description


	value (str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict], None [https://docs.python.org/3/library/constants.html#None], optional) – Description


	type (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Description






	Returns

	None if value is given, else new JSONStreamWriter










	
write_obj(obj)

	Write obj as JSON to file.


	Parameters

	obj (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Serializable obj to write to file.














	
parsing.library.logger.colored_json(j)

	






Tracker


	
class parsing.library.tracker.NullTracker(*args, **kwargs)

	Bases: parsing.library.tracker.Tracker

Dummy tracker used as an interface placeholder.


	
BROADCAST_TYPES = {'DEPARTMENT', 'INSTRUCTOR', 'MODE', 'SCHOOL', 'STATS', 'TERM', 'TIME', 'YEAR'}

	




	
add_viewer(viewer, name=None)

	Add viewer to broadcast queue.


	Parameters

	
	viewer (Viewer) – Viewer to add.


	name (None [https://docs.python.org/3/library/constants.html#None], str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Name the viewer.













	
broadcast(broadcast_type)

	Do nothing.






	
property department

	




	
end()

	End tracker and report to viewers.






	
get_viewer(name)

	Get viewer by name.

Will return arbitrary match if multiple viewers with same name exist.


	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Viewer name to get.



	Returns

	Viewer instance if found, else None



	Return type

	Viewer










	
has_viewer(name)

	Determine if name exists in viewers.


	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name to check against.



	Returns

	True if name in viewers else False



	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
property instructor

	




	
property mode

	




	
remove_viewer(name)

	Remove all viewers that match name.


	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Viewer name to remove.










	
report()

	Do nothing.






	
property school

	




	
start()

	Start timer of tracker object.






	
property stats

	




	
property term

	




	
property time

	




	
property year

	








	
class parsing.library.tracker.Tracker

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Tracks specified attributes and broadcasts to viewers.

@property attributes are defined for all BROADCAST_TYPES


	
BROADCAST_TYPES = {'DEPARTMENT', 'INSTRUCTOR', 'MODE', 'SCHOOL', 'STATS', 'TERM', 'TIME', 'YEAR'}

	




	
add_viewer(viewer, name=None)

	Add viewer to broadcast queue.


	Parameters

	
	viewer (Viewer) – Viewer to add.


	name (None [https://docs.python.org/3/library/constants.html#None], str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Name the viewer.













	
broadcast(broadcast_type)

	Broadcast tracker update to viewers.


	Parameters

	broadcast_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – message to go along broadcast bus.



	Raises

	TrackerError – if broadcast_type is not in BROADCAST_TYPE.










	
end()

	End tracker and report to viewers.






	
get_viewer(name)

	Get viewer by name.

Will return arbitrary match if multiple viewers with same name exist.


	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Viewer name to get.



	Returns

	Viewer instance if found, else None



	Return type

	Viewer










	
has_viewer(name)

	Determine if name exists in viewers.


	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name to check against.



	Returns

	True if name in viewers else False



	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
remove_viewer(name)

	Remove all viewers that match name.


	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Viewer name to remove.










	
report()

	Notify viewers that tracker has ended.






	
start()

	Start timer of tracker object.










	
exception parsing.library.tracker.TrackerError(data, *args)

	Bases: parsing.library.exceptions.PipelineError

Tracker error class.


	
args

	




	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.












Viewer


	
class parsing.library.viewer.ETAProgressBar

	Bases: parsing.library.viewer.Viewer


	
receive(tracker, broadcast_type)

	Incremental updates of tracking info.


	Parameters

	
	tracker (Tracker) – Tracker instance.


	broadcast_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Broadcast type emitted by tracker.













	
report(tracker)

	Do nothing.










	
class parsing.library.viewer.Hoarder

	Bases: parsing.library.viewer.Viewer

Accumulate a log of some properties of the tracker.


	
receive(tracker, broadcast_type)

	Receive an update from a tracker.

Ignore all broadcasts that are not TIME.


	Parameters

	
	tracker (parsing.library.tracker.Tracker) – Tracker receiving update from.


	broadcast_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Broadcast message from tracker.













	
report(tracker)

	Do nothing.






	
property schools

	Get schools attribute (i.e. self.schools).


	Returns

	Value of schools storage value.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]














	
class parsing.library.viewer.StatProgressBar(stat_format='', statistics=None)

	Bases: parsing.library.viewer.Viewer

Command line progress bar viewer for data pipeline.


	
SWITCH_SIZE = 100

	




	
receive(tracker, broadcast_type)

	Incremental update to progress bar.






	
report(tracker)

	Do nothing.










	
class parsing.library.viewer.StatView

	Bases: parsing.library.viewer.Viewer

Keeps view of statistics of objects processed pipeline.


	
KINDS

	The kinds of objects that can be tracked.
TODO - move this to a shared space w/Validator


	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]










	
LABELS

	The status labels of objects that can be tracked.


	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]










	
stats

	The view itself of the stats.


	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
KINDS = ('course', 'section', 'meeting', 'evaluation', 'offering', 'eval')

	




	
LABELS = ('valid', 'created', 'new', 'updated', 'total')

	




	
receive(tracker, broadcast_type)

	Receive an update from a tracker.

Ignore all broadcasts that are not STATUS.


	Parameters

	
	tracker (parsing.library.tracker.Tracker) – Tracker receiving update from.


	broadcast_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Broadcast message from tracker.













	
report(tracker=None)

	Dump stats.










	
class parsing.library.viewer.TimeDistributionView

	Bases: parsing.library.viewer.Viewer

Viewer to analyze time distribution.

Calculates granularity and holds report and 12, 24hr distribution.


	
distribution

	Contains counts of 12 and 24hr sightings.


	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
granularity

	Time granularity of viewed times.


	Type

	int [https://docs.python.org/3/library/functions.html#int]










	
receive(tracker, broadcast_type)

	Receive an update from a tracker.

Ignore all broadcasts that are not TIME.


	Parameters

	
	tracker (parsing.library.tracker.Tracker) – Tracker receiving update from.


	broadcast_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Broadcast message from tracker.













	
report(tracker)

	Do nothing.










	
class parsing.library.viewer.Timer(format='%(elapsed)s', **kwargs)

	Bases: progressbar.widgets.FormatLabel, progressbar.widgets.TimeSensitiveWidgetBase

Custom timer created to take away ‘Elapsed Time’ string.


	
INTERVAL = datetime.timedelta(microseconds=100000)

	




	
check_size(progress)

	




	
mapping = {'elapsed': ('total_seconds_elapsed', <function format_time>), 'finished': ('end_time', None), 'last_update': ('last_update_time', None), 'max': ('max_value', None), 'seconds': ('seconds_elapsed', None), 'start': ('start_time', None), 'value': ('value', None)}

	




	
required_values = []

	








	
class parsing.library.viewer.Viewer

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A view that is updated via a tracker object broadcast or report.


	
abstract receive(tracker, broadcast_type)

	Incremental updates of tracking info.


	Parameters

	
	tracker (Tracker) – Tracker instance.


	broadcast_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Broadcast type emitted by tracker.













	
abstract report(tracker)

	Report all tracked info.


	Parameters

	tracker (Tracker) – Tracker instance.














	
exception parsing.library.viewer.ViewerError(data, *args)

	Bases: parsing.library.exceptions.PipelineError

Viewer error class.


	
args

	




	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.












Digestor


	
class parsing.library.digestor.Absorb(school, meta)

	Bases: parsing.library.digestor.DigestionStrategy

Load valid data into Django db.


	
meta

	Meta-information to use for DataUpdate object


	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
school

	
	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
classmethod digest_section(parmams, clean=True)

	




	
static remove_offerings(section_obj)

	Remove all offerings associated with a section.


	Parameters

	section_obj (Section) – Description










	
static remove_section(section_code, course_obj)

	Remove section specified from database.


	Parameters

	
	section (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Description


	course_obj (Course) – Section part of this course.













	
wrap_up()

	Update time updated for school at wrap_up of parse.










	
class parsing.library.digestor.Burp(school, meta, output=None)

	Bases: parsing.library.digestor.DigestionStrategy

Load valid data into Django db and output diff between input and db data.


	
absorb

	Digestion strategy.


	Type

	Vommit










	
vommit

	Digestion strategy.


	Type

	Absorb










	
wrap_up()

	Do whatever needs to be done to wrap_up digestion session.










	
class parsing.library.digestor.DigestionAdapter(school, cached, short_course_weeks_limit)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Converts JSON defititions to model compliant dictionay.


	
cache

	Caches Django objects to avoid redundant queries.


	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
school

	School code.


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
adapt_course(course)

	Adapt course for digestion.


	Parameters

	course (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – course info



	Returns

	Adapted course for django object.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]



	Raises

	DigestionError – course is None










	
adapt_evaluation(evaluation)

	Adapt evaluation to model dictionary.


	Parameters

	evaluation (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – validated evaluation.



	Returns

	Description



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
adapt_meeting(meeting, section_model=None)

	Adapt meeting to Django model.


	Parameters

	
	meeting (TYPE) – Description


	section_model (None [https://docs.python.org/3/library/constants.html#None], optional) – Description






	Yields

	dict



	Raises

	DigestionError – meeting is None.










	
adapt_section(section, course_model=None)

	Adapt section to Django model.


	Parameters

	
	section (TYPE) – Description


	course_model (None [https://docs.python.org/3/library/constants.html#None], optional) – Description






	Returns

	formatted section dictionary



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]



	Raises

	DigestionError – Description














	
exception parsing.library.digestor.DigestionError(data, *args)

	Bases: parsing.library.exceptions.PipelineError

Digestor error class.


	
args

	




	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.










	
class parsing.library.digestor.DigestionStrategy

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
abstract wrap_up()

	Do whatever needs to be done to wrap_up digestion session.










	
class parsing.library.digestor.Digestor(school, meta, tracker=<parsing.library.tracker.NullTracker object>)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Digestor in data pipeline.


	
adapter

	Adapts


	Type

	DigestionAdapter










	
cache

	Caches recently used Django objects to be used as
foriegn keys.


	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
data

	The data to be digested.


	Type

	TYPE










	
meta

	meta data associated with input data.


	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
MODELS

	mapping from object type to Django model class.


	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
school

	School to digest.


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
strategy

	Load and/or diff db depending on strategy


	Type

	DigestionStrategy










	
tracker

	Description


	Type

	parsing.library.tracker.Tracker










	
MODELS = {'course': <class 'timetable.models.Course'>, 'evaluation': <class 'timetable.models.Evaluation'>, 'offering': <class 'timetable.models.Offering'>, 'section': <class 'timetable.models.Section'>, 'semester': <class 'timetable.models.Semester'>}

	




	
digest(data, diff=True, load=True, output=None)

	Digest data.






	
digest_course(course)

	Create course in database from info in json model.


	Returns

	django course model object










	
digest_eval(evaluation)

	Digest evaluation.


	Parameters

	evaluation (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – 










	
digest_meeting(meeting, section_model=None)

	Create offering in database from info in model map.


	Parameters

	section_model – JSON course model object





Return: Offerings as generator






	
digest_section(section, course_model=None)

	Create section in database from info in model map.


	Parameters

	course_model – django course model object



	Keyword Arguments

	clean (boolean) – removes course offerings associated with section
if set



	Returns

	django section model object










	
wrap_up()

	








	
class parsing.library.digestor.Vommit(output)

	Bases: parsing.library.digestor.DigestionStrategy

Output diff between input and db data.


	
diff(kind, inmodel, dbmodel, hide_defaults=True)

	Create a diff between input and existing model.


	Parameters

	
	kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – kind of object to diff.


	inmodel (model) – Description


	dbmodel (model) – Description


	hide_defaults (bool [https://docs.python.org/3/library/functions.html#bool], optional) – hide values that are defaulted into db






	Returns

	Diff



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
static get_model_defaults()

	




	
remove_defaulted_keys(kind, dct)

	




	
wrap_up()

	Do whatever needs to be done to wrap_up digestion session.












Exceptions


	
exception parsing.library.exceptions.ParseError(data, *args)

	Bases: parsing.library.exceptions.PipelineError

Parser error class.


	
args

	




	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.










	
exception parsing.library.exceptions.ParseJump(data, *args)

	Bases: parsing.library.exceptions.PipelineWarning

Parser exception used for control flow.


	
args

	




	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.










	
exception parsing.library.exceptions.ParseWarning(data, *args)

	Bases: parsing.library.exceptions.PipelineWarning

Parser warning class.


	
args

	




	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.










	
exception parsing.library.exceptions.PipelineError(data, *args)

	Bases: parsing.library.exceptions.PipelineException

Data-pipeline error class.


	
args

	




	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.










	
exception parsing.library.exceptions.PipelineException(data, *args)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Data-pipeline exception class.


	Should never be constructed directly. Use:
	
	PipelineError


	PipelineWarning









	
args

	




	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.










	
exception parsing.library.exceptions.PipelineWarning(data, *args)

	Bases: parsing.library.exceptions.PipelineException, UserWarning [https://docs.python.org/3/library/exceptions.html#UserWarning]

Data-pipeline warning class.


	
args

	




	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.












Extractor


	
class parsing.library.extractor.Extraction(key, container, patterns)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]


	
container

	Alias for field number 1






	
count(value, /)

	Return number of occurrences of value.






	
index(value, start=0, stop=9223372036854775807, /)

	Return first index of value.

Raises ValueError if the value is not present.






	
key

	Alias for field number 0






	
patterns

	Alias for field number 2










	
parsing.library.extractor.extract_info_from_text(text, inject=None, extractions=None, use_lowercase=True, splice_text=True)

	Attempt to extract info from text and put it into course object.


	NOTE: Currently unstable and unused as it introduces too many bugs.
	Might reconsider for later use.






	Parameters

	
	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – text to attempt to extract information from


	extractions (None [https://docs.python.org/3/library/constants.html#None], optional) – Description


	inject (None [https://docs.python.org/3/library/constants.html#None], optional) – Description


	use_lowercase (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Description






	Returns

	the text trimmed of extracted information



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]












Utils


	
class parsing.library.utils.DotDict(dct)

	Bases: dict [https://docs.python.org/3/library/stdtypes.html#dict]

Dot notation access for dictionary.

Supports set, get, and delete.

Examples

>>> d = DotDict({'a': 1, 'b': 2, 'c': {'ca': 31}})
>>> d.a, d.b
(1, 2)
>>> d['a']
1
>>> d['a'] = 3
>>> d.a, d['b']
(3, 2)
>>> d.c.ca, d.c['ca']
(31, 31)






	
as_dict()

	Return pure dictionary representation of self.






	
clear() → None.  Remove all items from D.

	




	
copy() → a shallow copy of D

	




	
fromkeys(value=None, /)

	Create a new dictionary with keys from iterable and values set to value.






	
get(key, default=None, /)

	Return the value for key if key is in the dictionary, else default.






	
items() → a set-like object providing a view on D’s items

	




	
keys() → a set-like object providing a view on D’s keys

	




	
pop(k[, d]) → v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised






	
popitem()

	Remove and return a (key, value) pair as a 2-tuple.

Pairs are returned in LIFO (last-in, first-out) order.
Raises KeyError if the dict is empty.






	
setdefault(key, default=None, /)

	Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.






	
update([E, ]**F) → None.  Update D from dict/iterable E and F.

	If E is present and has a .keys() method, then does:  for k in E: D[k] = E[k]
If E is present and lacks a .keys() method, then does:  for k, v in E: D[k] = v
In either case, this is followed by: for k in F:  D[k] = F[k]






	
values() → an object providing a view on D’s values

	








	
class parsing.library.utils.SimpleNamespace(**kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]






	
parsing.library.utils.clean(dirt)

	Recursively clean json-like object.


	list::
	
	remove None elements


	None on empty list






	dict [https://docs.python.org/3/library/stdtypes.html#dict]::
	
	filter out None valued key, value pairs


	None on empty dict






	str::
	
	convert unicode whitespace to ascii


	strip extra whitespace


	None on empty string









	Parameters

	dirt – the object to clean



	Returns

	Cleaned dict, cleaned list, cleaned string, or pass-through.










	
parsing.library.utils.dict_filter_by_dict(a, b)

	Filter dictionary a by b.

dict or set
Items or keys must be string or regex.
Filters at arbitrary depth with regex matching.


	Parameters

	
	a (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary to filter.


	b (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary to filter by.






	Returns

	Filtered dictionary



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
parsing.library.utils.dict_filter_by_list(a, b)

	




	
parsing.library.utils.dir_to_dict(path)

	Recursively create nested dictionary representing directory contents.


	Parameters

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path of the directory.



	Returns

	Dictionary representation of the directory.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
parsing.library.utils.is_short_course(date_start, date_end, short_course_weeks_limit)

	
	Checks whether a course’s duration is longer than a short term
	course week limit or not. Limit is defined in the config file for
the corresponding school.






	Parameters

	
	{str} -- Any reasonable date value for start date (date_start) – 


	{str} -- Any reasonable date value for end date (date_end) – 


	{int} -- Number of weeks a course can be (short_course_weeks_limit) – 


	as "short term". (defined) – 






	Raises

	
	ValidationError – Invalid date input


	ValidationError – Invalid date input






	Returns

	bool – Defines whether the course is short term or not.










	
parsing.library.utils.iterrify(x)

	Create iterable object if not already.

Will wrap str types in extra iterable eventhough str is iterable.

Examples

>>> for i in iterrify(1):
...     print(i)
1
>>> for i in iterrify([1]):
...     print(i)
1
>>> for i in iterrify('hello'):
...     print(i)
'hello'










	
parsing.library.utils.make_list(x=None)

	Wrap in list if not list already.

If input is None, will return empty list.


	Parameters

	x – Input.



	Returns

	Input wrapped in list.



	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]










	
parsing.library.utils.pretty_json(obj)

	Prettify object as JSON.


	Parameters

	obj (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Serializable object to JSONify.



	Returns

	Prettified JSON.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
parsing.library.utils.safe_cast(val, to_type, default=None)

	Attempt to cast to specified type or return default.


	Parameters

	
	val – Value to cast.


	to_type – Type to cast to.


	default (None [https://docs.python.org/3/library/constants.html#None], optional) – Description






	Returns

	Description



	Return type

	to_type










	
parsing.library.utils.short_date(date)

	Convert input to %m-%d-%y format. Returns None if input is None.


	Parameters

	date (str [https://docs.python.org/3/library/stdtypes.html#str]) – date in reasonable format



	Returns

	Date in format %m-%d-%y if the input is not None.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]



	Raises

	ParseError – Unparseable time input.










	
parsing.library.utils.time24(time)

	Convert time to 24hr format.


	Parameters

	time (str [https://docs.python.org/3/library/stdtypes.html#str]) – time in reasonable format



	Returns

	24hr time in format hh:mm



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]



	Raises

	ParseError – Unparseable time input.










	
parsing.library.utils.titlize(name)

	Format name into pretty title.

Will uppercase roman numerals.
Will lowercase conjuctions and prepositions.

Examples

>>> titlize('BIOLOGY OF CANINES II')
Biology of Canines II










	
parsing.library.utils.update(d, u)

	Recursive update to dictionary w/o overwriting upper levels.

Examples

>>> update({0: {1: 2, 3: 4}}, {1: 2, 0: {5: 6, 3: 7}})
{0: {1: 2}}














Parsing Models Documentation


	
class parsing.models.DataUpdate(*args, **kwargs)

	Stores the date/time that the school’s data was last updated.

Scheduled updates occur when digestion into the database completes.


	
school

	the school code that was updated (e.g. jhu)


	Type

	CharField










	
semester

	the semester for the
update


	Type

	ForeignKey to Semester










	
last_updated

	the datetime last updated


	Type

	DateTimeField










	
reason

	the reason it was updated
(default Scheduled Update)


	Type

	CharField










	
update_type

	which field was updated


	Type

	CharField










	
UPDATE_TYPE

	Update types allowed.


	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of tuple [https://docs.python.org/3/library/stdtypes.html#tuple]










	
COURSES

	Update type.


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
EVALUATIONS

	Update type.


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
MISCELLANEOUS

	Update type.


	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
exception DoesNotExist

	




	
exception MultipleObjectsReturned

	










Scheduled Tasks







            

          

      

      

    

  

    
      
          
            
  
Frontend Documentation


The Structure


Note

to understand the file structure, it is best to complete the following tutorial: EggHead Redux [https://egghead.io/courses/getting-started-with-redux]. We follow the same structure and conventions which are typical of React/Redux applications.



Our React/Redux frontend can be found in static/js/redux and has the following structure:

static/js/redux
├── __fixtures__
├── __test_utils__
├── __tests__
├── actions
├── constants
├── helpers
├── init.jsx
├── reducers
├── ui
└── util.jsx





Let’s break down this file structure a bit by exploring what lives in each section.


__fixtures__:  JSON fixtures used as props to components during tests.

__test_utils__: mocks and other utilities helpful for testing.

__tests__: unit tests, snapshot tests, all frontend driven tests.

actions: all Redux/Thunk actions dispatched by various components. More info on this (more info on this below: Actions)

constants: application-wide constant variables

init.jsx: handles application initialization. Handles flows (see Flows Documentation), the passing of initial data to the frontend, and on page load methods.

reducers: Redux state reducers. (To understand what part of state each reducer handles, see Reducers).

ui: all components and containers. (For more info see What Components Live Where).

util.jsx: utility functions useful to the entire application.





Init.jsx

This file is responsible for the initialization of the application. It creates a Redux store from the root reducer, then takes care of all initialization. Only in init.jsx do we reference JSON passed from the backend via timetable.html.

It is this JSON, called initData which we read into state as our initial state for the redux application. However, sometimes there are special flows that a user could follow that might change the initial state of the application at page load. For this we use flows which are documented more thoroughly at the following link: Flows Documentation.

Other actions required for page initialization are also dispatched from init.jsx including those which load cached timetables from the browser, alerts that show on page load, the loading of user’s timetables if logged in, and the triggering of the user agreement modal when appropriate.

Finally, init.jsx renders <Semesterly /> to the DOM. This is the root of the application.




Actions

The actions directory follows this structure:

static/js/redux/actions
├── calendar_actions.jsx ── exporting the calendar (ical, google)
├── exam_actions.jsx ── final exam scheduling/sharing
├── modal_actions.jsx ── openning/closing/manipulating all modals
├── school_actions.jsx ── getting school info
├── search_actions.jsx ── search/adv search
├── timetable_actions.jsx ── fetching/loading/manipulating timetables
└── user_actions.jsx ── user settings/friends/logged in functionality








Reducers

The reducers directory follows this structure:

static/js/redux/reducers
├── alerts_reducer.jsx ── visibility of alerts
├── calendar_reducer.jsx
├── classmates_reducer.jsx
├── course_info_reducer.jsx
├── course_sections_reducer.jsx
├── custom_slots_reducer.jsx
├── exploration_modal_reducer.jsx
├── final_exams_modal_reducer.jsx
├── friends_reducer.jsx
├── integration_modal_reducer.jsx
├── integrations_reducer.jsx
├── notification_token_reducer.jsx
├── optional_courses_reducer.jsx
├── peer_modal_reducer.jsx
├── preference_modal_reducer.jsx
├── preferences_reducer.jsx
├── root_reducer.jsx
├── save_calendar_modal_reducer.jsx
├── saving_timetable_reducer.jsx
├── school_reducer.jsx
├── search_results_reducer.jsx
├── semester_reducer.jsx
├── signup_modal_reducer.jsx
├── terms_of_service_banner_reducer.jsx
├── terms_of_service_modal_reducer.jsx
├── timetables_reducer.jsx
├── ui_reducer.jsx
├── user_acquisition_modal_reducer.jsx
└── user_info_reducer.jsx










What Components Live Where

All of the components live under the /ui directory which follow the following structure:

static/js/redux/ui
├── alerts
│   └── ...
├── containers
│   └── ...
├── modals
│   └── ...
└── ...





General components live directly under /ui/ and their containers live under /ui/contaners. However alerts (those little popups that show up in the top right of the app), live under /ui/alerts, and all modals live under /ui/modals. Their containers live under their respective sub-directories.


Modals








	Component File

	Screenshot

	Description





	course_modal_body.jsx

	[image: _images/course_modal_body.png]

	


	course_modal.jsx

	[image: _images/course_modal.png]

	


	exploration_modal.jsx

	[image: _images/exploration_modal.png]

	


	final_exams_modal.jsx

	[image: _images/final_exams_modal.png]

	


	peer_modal.jsx

	[image: _images/peer_modal.png]

	


	preference_modal.jsx

	[image: _images/preference_modal.png]

	


	save_calendar_modal.jsx

	[image: _images/save_calendar_modal.png]

	


	signup_modal.jsx

	[image: _images/signup_modal.png]

	


	tut_modal.jsx

	[image: _images/tut_modal.png]

	


	user_acquisition_modal.jsx

	[image: _images/user_acquisition_modal.png]

	


	user_settings_modal.jsx

	[image: _images/user_settings_modal.png]

	








General Components








	Component File

	Screenshot

	Description





	alert.jsx

	[image: _images/alert.png]

	


	Calendar.tsx

	[image: _images/calendar.png]

	


	course_modal_section.jsx

	[image: _images/course_modal_section.png]

	


	CreditTicker.tsx

	[image: _images/credit_ticker.png]

	


	CustomSlot.tsx

	[image: _images/custom_slot.png]

	


	DayCalendar.tsx

	[image: _images/day_calendar.png]

	


	evaluation_list.jsx

	[image: _images/evaluation_list.png]

	


	evaluation.jsx

	[image: _images/evaluation.png]

	


	MasterSlot.tsx

	[image: _images/master_slot.png]

	


	pagination.jsx

	[image: _images/pagination.png]

	


	reaction.jsx

	[image: _images/reaction.png]

	


	SearchBar.tsx

	[image: _images/search_bar.png]

	


	SearchResult.tsx

	[image: _images/search_result.png]

	


	search_side_bar.jsx

	[image: _images/search_side_bar.png]

	


	Semesterly.tsx

	[image: _images/semesterly.png]

	


	SideBar.jsx

	[image: _images/side_bar.png]

	


	side_scroller.jsx

	[image: _images/side_scroller.png]

	


	slot_hover_tip.jsx

	[image: _images/slot_hover_tip.png]

	


	SlotManager.tsx

	[image: _images/slot_manager.png]

	


	slot.jsx

	[image: _images/slot.png]

	


	social_profile.jsx

	[image: _images/social_profile.png]

	


	terms_of_service_banner.jsx

	[image: _images/terms_of_service_banner.png]

	


	terms_of_service_modal.jsx

	[image: _images/terms_of_service_modal.png]

	


	timetable_loader.jsx

	[image: _images/timetable_loader.png]

	


	timetable_name_input.jsx

	[image: _images/timetable_name_input.png]

	


	TopBar.tsx

	[image: _images/top_bar.png]

	













            

          

      

      

    

  

    
      
          
            
  
HTML/SCSS Documentation


Note

Although we write SCSS, you’ll notice we use the SassLint tool and Sassloader.  SASS is an older version of SCSS and SCSS still uses the old SASS compiler.  Please don’t write SASS, we’re a SCSS shop.  You can read about it briefly here. [https://stackoverflow.com/questions/5654447/whats-the-difference-between-scss-and-sass/]




What’s in SCSS, What’s not?

Written in SCSS:



	Web Application







Written in plain CSS:



	Splash pages


	Pages for SEO


	basically everything that is not the web app










File Structure

All of our SCSS is in static/css/timetable and is broken down into 5 folders.  The main.scss ties all the other SCSS files together importing them in the correct order.







	Folder

	Use





	Base

	colors.scss and fonts.scss



	Vendors

	any scss that came from a package that we wanted to customize heavily



	Framework

	grid.scss and page_layout.scss



	Modules

	styles for modular parts of our UI



	Partials

	component specific styles






All of the other CSS files in the static/css folder is either used for various purposes outlined above.




Linting and Codestyle


Note

Although we write SCSS, you’ll notice we use the SassLint tool and Sassloader.  SASS is an older version of SCSS and SCSS still uses the old SASS compiler.  Please don’t write SASS, we’re a SCSS shop.  You can read about it briefly here. [https://stackoverflow.com/questions/5654447/whats-the-difference-between-scss-and-sass/]



We use SASSLint with Airbnb’s .scss-lint.yml file converted into .sass-lint.yml.  Some things to take note of are



	All colors must be declared as variables in colors.scss.  Try your best to use the existing colors in that file


	Double quotes


	Keep nesting below 3 levels, use BEM


	Use shortened property values when possible, i.e. margin: 0 3px instead of margin: 0 3px 0 3px


	If a property is 0 don’t specify units







Refer to our .sass-lint.yml for more details and if you’re using intelliJ or some IDE, use the sass-lint module to highlight code-style errors/warnings as you code.







            

          

      

      

    

  

    
      
          
            
  
Design/Branding Guidelines


Fonts & Colors

[image: Guidelines 1]



Logo Usage

[image: Guidelines 2]



Logos

You can download logos and favicon files here [https://drive.google.com/open?id=0BzXL0vLjAYlLcGhHWlIyYUZBcmc]







            

          

      

      

    

  

    
      
          
            
  
Editing This Documentation


Building the Docs

From the docs directory, execute the following command to rebuild all edited pages:

make html





To rebuild all pages, you may want to do a clean build:

make clean && make html








Viewing the Docs Locally

From the docs directory, open the index file from the build directory with the command:

open _build/html/index.html








Editing the Docs

All Django modules are documented via Sphinx AutoDoc [http://www.sphinx-doc.org/en/stable/ext/autodoc.html]. To edit this documentation, update the docstrings on the relevant functions/classes.

To update the handwritten docs, edit the relevant .rst files which are included by filename from index.rst.


Note

Be sure no warnings or errors are printed as output during the build process. Travis will build these docs and the build will fail on error.









            

          

      

      

    

  

    
      
          
            

   Python Module Index


   
   a | 
   c | 
   h | 
   p | 
   s | 
   t
   


   
     		 	

     		
       a	

     
       	[image: -]
       	
       agreement	
       

     
       	
       	   
       agreement.models	
       

     
       	[image: -]
       	
       authpipe	
       

     
       	
       	   
       authpipe.utils	
       

     
       	
       	   
       authpipe.views	
       

     		 	

     		
       c	

     
       	[image: -]
       	
       courses	
       

     
       	
       	   
       courses.serializers	
       

     
       	
       	   
       courses.utils	
       

     
       	
       	   
       courses.views	
       

     		 	

     		
       h	

     
       	[image: -]
       	
       helpers	
       

     
       	
       	   
       helpers.decorators	
       

     
       	
       	   
       helpers.mixins	
       

     		 	

     		
       p	

     
       	[image: -]
       	
       parsing	
       

     
       	
       	   
       parsing.library.digestor	
       

     
       	
       	   
       parsing.library.exceptions	
       

     
       	
       	   
       parsing.library.extractor	
       

     
       	
       	   
       parsing.library.ingestor	
       

     
       	
       	   
       parsing.library.logger	
       

     
       	
       	   
       parsing.library.tracker	
       

     
       	
       	   
       parsing.library.utils	
       

     
       	
       	   
       parsing.library.validator	
       

     
       	
       	   
       parsing.library.viewer	
       

     
       	
       	   
       parsing.models	
       

     		 	

     		
       s	

     
       	[image: -]
       	
       searches	
       

     
       	
       	   
       searches.utils	
       

     
       	
       	   
       searches.views	
       

     
       	[image: -]
       	
       semesterly	
       

     
       	
       	   
       semesterly.test_utils	
       

     
       	[image: -]
       	
       student	
       

     
       	
       	   
       student.models	
       

     
       	
       	   
       student.serializers	
       

     
       	
       	   
       student.utils	
       

     
       	
       	   
       student.views	
       

     		 	

     		
       t	

     
       	[image: -]
       	
       timetable	
       

     
       	
       	   
       timetable.models	
       

     
       	
       	   
       timetable.serializers	
       

     
       	
       	   
       timetable.utils	
       

     
       	
       	   
       timetable.views	
       

   



            

          

      

      

    

  

    
      
          
            

Index



 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Y
 


A


  	
      	Absorb (class in parsing.library.digestor)


      	absorb (parsing.library.digestor.Burp attribute)


      	accept_tos() (in module student.views)


      	adapt_course() (parsing.library.digestor.DigestionAdapter method)


      	adapt_evaluation() (parsing.library.digestor.DigestionAdapter method)


      	adapt_meeting() (parsing.library.digestor.DigestionAdapter method)


      	adapt_section() (parsing.library.digestor.DigestionAdapter method)


      	adapter (parsing.library.digestor.Digestor attribute)


      	add_course() (semesterly.test_utils.SeleniumTestCase method)


      	add_course_from_course_modal() (semesterly.test_utils.SeleniumTestCase method)


      	add_meeting_and_check_conflict() (in module timetable.utils)


      	add_viewer() (parsing.library.tracker.NullTracker method)

      
        	(parsing.library.tracker.Tracker method)


      


      	Agreement (class in agreement.models)


      	Agreement.DoesNotExist


      	
    agreement.models

      
        	module


      


      	Agreement.MultipleObjectsReturned


      	all_courses() (in module courses.views)


      	ALL_KEYS (parsing.library.ingestor.Ingestor attribute), [1]


      	allow_conflicts_add() (semesterly.test_utils.SeleniumTestCase method)


      	areas (timetable.models.Course attribute)


      	args (parsing.library.digestor.DigestionError attribute)

      
        	(parsing.library.exceptions.ParseError attribute)


        	(parsing.library.exceptions.ParseJump attribute)


        	(parsing.library.exceptions.ParseWarning attribute)


        	(parsing.library.exceptions.PipelineError attribute)


        	(parsing.library.exceptions.PipelineException attribute)


        	(parsing.library.exceptions.PipelineWarning attribute)


        	(parsing.library.ingestor.IngestionError attribute)


        	(parsing.library.ingestor.IngestionWarning attribute)


        	(parsing.library.tracker.TrackerError attribute)


        	(parsing.library.validator.MultipleDefinitionsWarning attribute)


        	(parsing.library.validator.ValidationError attribute)


        	(parsing.library.validator.ValidationWarning attribute)


        	(parsing.library.viewer.ViewerError attribute)


      


  

  	
      	as_dict() (parsing.library.utils.DotDict method)


      	assert_custom_event_exists() (semesterly.test_utils.SeleniumTestCase method)


      	assert_friend_image_found() (semesterly.test_utils.SeleniumTestCase method)


      	assert_friend_in_modal() (semesterly.test_utils.SeleniumTestCase method)


      	assert_invisibility() (semesterly.test_utils.SeleniumTestCase method)


      	assert_loader_completes() (semesterly.test_utils.SeleniumTestCase method)


      	assert_n_elements_found() (semesterly.test_utils.SeleniumTestCase method)


      	assert_ptt_const_across_refresh() (semesterly.test_utils.SeleniumTestCase method)


      	assert_ptt_equals() (semesterly.test_utils.SeleniumTestCase method)


      	assert_slot_presence() (semesterly.test_utils.SeleniumTestCase method)


      	associate_students() (in module authpipe.utils)


      	
    authpipe.utils

      
        	module


      


      	
    authpipe.views

      
        	module


      


  





B


  	
      	BRACES (parsing.library.logger.JSONStreamWriter attribute), [1]


      	break_on_error (parsing.library.ingestor.Ingestor attribute)


      	break_on_warning (parsing.library.ingestor.Ingestor attribute)


      	broadcast() (parsing.library.tracker.NullTracker method)

      
        	(parsing.library.tracker.Tracker method)


      


  

  	
      	BROADCAST_TYPES (parsing.library.tracker.NullTracker attribute)

      
        	(parsing.library.tracker.Tracker attribute)


      


      	Burp (class in parsing.library.digestor)


  





C


  	
      	cache (parsing.library.digestor.DigestionAdapter attribute)

      
        	(parsing.library.digestor.Digestor attribute)


      


      	campus (timetable.models.Course attribute)


      	can_potentially_conflict() (in module timetable.utils)


      	change_ptt_name() (semesterly.test_utils.SeleniumTestCase method)


      	change_term() (semesterly.test_utils.SeleniumTestCase method)


      	check_size() (parsing.library.viewer.Timer method)


      	check_student_token() (in module authpipe.utils)


      	ClassmateView (class in student.views)


      	clean() (in module parsing.library.utils)


      	clear() (parsing.library.ingestor.Ingestor method)

      
        	(parsing.library.utils.DotDict method)


      


      	clear_search_query() (semesterly.test_utils.SeleniumTestCase method)


      	clear_tutorial() (semesterly.test_utils.SeleniumTestCase method)


      	click_off() (semesterly.test_utils.SeleniumTestCase method)


      	close_adv_search() (semesterly.test_utils.SeleniumTestCase method)


      	close_course_modal() (semesterly.test_utils.SeleniumTestCase method)


      	code (timetable.models.Course attribute)


      	colored_json() (in module parsing.library.logger)


      	compare_timetable() (semesterly.test_utils.SeleniumTestCase method)


      	complete_user_settings_basics() (semesterly.test_utils.SeleniumTestCase method)


      	config (parsing.library.validator.Validator attribute)


      	container (parsing.library.extractor.Extraction attribute)


      	converter() (parsing.library.logger.JSONColoredFormatter method)

      
        	(parsing.library.logger.JSONFormatter method)


      


      	copy() (parsing.library.ingestor.Ingestor method)

      
        	(parsing.library.utils.DotDict method)


      


      	corequisites (timetable.models.Course attribute)


      	cores (timetable.models.Course attribute)


      	count() (parsing.library.extractor.Extraction method)


      	Course (class in timetable.models)


  

  	
      	course (timetable.models.Evaluation attribute)

      
        	(timetable.models.Section attribute)


        	(timetable.utils.Slot attribute)


      


      	Course.DoesNotExist


      	Course.MultipleObjectsReturned


      	course_code (timetable.models.Evaluation attribute)


      	course_code_regex (parsing.library.validator.Validator attribute)


      	course_name_contains_token() (in module searches.utils)


      	course_page() (in module courses.views)


      	course_section_id (timetable.models.Section attribute)


      	CourseDetail (class in courses.views)


      	CourseIntegration (class in timetable.models)


      	CourseIntegration.DoesNotExist


      	CourseIntegration.MultipleObjectsReturned


      	CourseModal (class in courses.views)


      	COURSES (parsing.models.DataUpdate attribute)


      	courses (timetable.utils.Timetable attribute)


      	
    courses.serializers

      
        	module


      


      	
    courses.utils

      
        	module


      


      	
    courses.views

      
        	module


      


      	courses_to_slots() (in module timetable.utils)


      	CourseSearchList (class in searches.views)


      	CourseSerializer (class in courses.serializers)


      	create_custom_event() (semesterly.test_utils.SeleniumTestCase method)


      	create_friend() (semesterly.test_utils.SeleniumTestCase method)


      	create_personal_timetable_obj() (semesterly.test_utils.SeleniumTestCase method)


      	create_ptt() (semesterly.test_utils.SeleniumTestCase method)


      	create_student() (in module authpipe.utils)


      	CsrfExemptSessionAuthentication (class in helpers.mixins)


  





D


  	
      	data (parsing.library.digestor.Digestor attribute)


      	DataUpdate (class in parsing.models)


      	DataUpdate.DoesNotExist


      	DataUpdate.MultipleObjectsReturned


      	day (timetable.models.Offering attribute)


      	default_msec_format (parsing.library.logger.JSONColoredFormatter attribute)

      
        	(parsing.library.logger.JSONFormatter attribute)


      


      	default_time_format (parsing.library.logger.JSONColoredFormatter attribute)

      
        	(parsing.library.logger.JSONFormatter attribute)


      


      	delete() (student.views.UserTimetableView method)

      
        	(student.views.UserView method)


      


      	department (parsing.library.tracker.NullTracker property)

      
        	(timetable.models.Course attribute)


      


      	description (timetable.models.Course attribute)


      	description() (semesterly.test_utils.SeleniumTestCase method)


      	dict_filter_by_dict() (in module parsing.library.utils)


      	dict_filter_by_list() (in module parsing.library.utils)


  

  	
      	diff() (parsing.library.digestor.Vommit method)


      	digest() (parsing.library.digestor.Digestor method)


      	digest_course() (parsing.library.digestor.Digestor method)


      	digest_eval() (parsing.library.digestor.Digestor method)


      	digest_meeting() (parsing.library.digestor.Digestor method)


      	digest_section() (parsing.library.digestor.Absorb class method)

      
        	(parsing.library.digestor.Digestor method)


      


      	DigestionAdapter (class in parsing.library.digestor)


      	DigestionError


      	DigestionStrategy (class in parsing.library.digestor)


      	Digestor (class in parsing.library.digestor)


      	dir_to_dict() (in module parsing.library.utils)


      	DisplayTimetable (class in timetable.utils)


      	DisplayTimetableSerializer (class in timetable.serializers)


      	distribution (parsing.library.viewer.TimeDistributionView attribute)


      	DotDict (class in parsing.library.utils)


      	driver (semesterly.test_utils.SeleniumTestCase attribute)


  





E


  	
      	edit_custom_event() (semesterly.test_utils.SeleniumTestCase method)


      	end() (parsing.library.ingestor.Ingestor method)

      
        	(parsing.library.tracker.NullTracker method)


        	(parsing.library.tracker.Tracker method)


      


      	enforce_csrf() (helpers.mixins.CsrfExemptSessionAuthentication method)


      	enrolment (timetable.models.Section attribute)


      	enter() (parsing.library.logger.JSONStreamWriter method)


      	enter_search_query() (semesterly.test_utils.SeleniumTestCase method)


      	ETAProgressBar (class in parsing.library.viewer)


      	Evaluation (class in timetable.models)


  

  	
      	Evaluation.DoesNotExist


      	Evaluation.MultipleObjectsReturned


      	EVALUATIONS (parsing.models.DataUpdate attribute)


      	EvaluationSerializer (class in courses.serializers)


      	EventSerializer (class in timetable.serializers)


      	exclusions (timetable.models.Course attribute)


      	execute_action_expect_alert() (semesterly.test_utils.SeleniumTestCase method)


      	exit() (parsing.library.logger.JSONStreamWriter method)


      	exit_compare_timetable() (semesterly.test_utils.SeleniumTestCase method)


      	extract_info_from_text() (in module parsing.library.extractor)


      	Extraction (class in parsing.library.extractor)


  





F


  	
      	FeatureFlowView (class in helpers.mixins)


      	file (parsing.library.logger.JSONStreamWriter attribute)


      	file_to_json() (parsing.library.validator.Validator static method)


      	find() (semesterly.test_utils.SeleniumTestCase method)


      	find_slots_to_fill() (in module timetable.utils)


      	first (parsing.library.logger.JSONStreamWriter attribute)


      	follow_and_validate_url() (semesterly.test_utils.SeleniumTestCase method)


      	follow_share_link_from_slot() (semesterly.test_utils.SeleniumTestCase method)


      	force_login() (in module semesterly.test_utils)


      	format() (parsing.library.logger.JSONColoredFormatter method)

      
        	(parsing.library.logger.JSONFormatter method)


      


  

  	
      	formatException() (parsing.library.logger.JSONColoredFormatter method)

      
        	(parsing.library.logger.JSONFormatter method)


      


      	formatMessage() (parsing.library.logger.JSONColoredFormatter method)

      
        	(parsing.library.logger.JSONFormatter method)


      


      	formatStack() (parsing.library.logger.JSONColoredFormatter method)

      
        	(parsing.library.logger.JSONFormatter method)


      


      	formatTime() (parsing.library.logger.JSONColoredFormatter method)

      
        	(parsing.library.logger.JSONFormatter method)


      


      	from_model() (timetable.utils.DisplayTimetable class method)


      	fromkeys() (parsing.library.ingestor.Ingestor method)

      
        	(parsing.library.utils.DotDict method)


      


      	function_returns_true (class in semesterly.test_utils)


  





G


  	
      	geneds (timetable.models.Course attribute)


      	get() (courses.views.CourseDetail method)

      
        	(courses.views.SchoolList method)


        	(parsing.library.ingestor.Ingestor method)


        	(parsing.library.utils.DotDict method)


        	(searches.views.CourseSearchList method)


        	(student.views.ClassmateView method)


        	(student.views.UserTimetableView method)


        	(student.views.UserView method)


      


      	get_avg_rating() (timetable.models.Course method)


      	get_classmates_from_course_id() (in module student.utils)


      	get_classmates_from_tts() (in module student.utils)


      	get_classmates_in_course() (in module courses.views)


      	get_current_semesters() (in module timetable.utils)


      	get_custom_event_fields() (semesterly.test_utils.SeleniumTestCase method)


      	get_day_to_usage() (in module timetable.utils)


      	get_elements_as_text() (semesterly.test_utils.SeleniumTestCase method)


      	get_evals() (courses.serializers.CourseSerializer method)


      	get_feature_flow() (courses.views.CourseModal method)

      
        	(helpers.mixins.FeatureFlowView method)


        	(timetable.views.TimetableLinkView method)


      


  

  	
      	get_friend_count_from_course_id() (in module student.utils)


      	get_hour_from_string_time() (in module timetable.utils)


      	get_hours_minutes() (in module timetable.utils)


      	get_minute_from_string_time() (in module timetable.utils)


      	get_model_defaults() (parsing.library.digestor.Vommit static method)


      	get_popularity_percent() (courses.serializers.CourseSerializer method)


      	get_queryset() (student.views.UserTimetablePreferenceView method)


      	get_reactions() (timetable.models.Course method)


      	get_regexed_courses() (courses.serializers.CourseSerializer method)


      	get_section_dict() (in module courses.serializers)


      	get_sections_by_section_type() (in module courses.utils)


      	get_student() (in module student.utils)


      	get_student_dict() (in module student.serializers)


      	get_student_tts() (in module student.utils)


      	get_test_url() (semesterly.test_utils.SeleniumTestCase method)


      	get_time_index() (in module timetable.utils)


      	get_timetable_name() (semesterly.test_utils.SeleniumTestCase method)


      	get_viewer() (parsing.library.tracker.NullTracker method)

      
        	(parsing.library.tracker.Tracker method)


      


      	get_xproduct_indicies() (in module timetable.utils)


      	granularity (parsing.library.viewer.TimeDistributionView attribute)


  





H


  	
      	has_conflict (timetable.utils.Timetable attribute)


      	has_viewer() (parsing.library.tracker.NullTracker method)

      
        	(parsing.library.tracker.Tracker method)


      


      	
    helpers.decorators

      
        	module


      


  

  	
      	
    helpers.mixins

      
        	module


      


      	Hoarder (class in parsing.library.viewer)


  





I


  	
      	img_dir (semesterly.test_utils.SeleniumTestCase attribute)


      	index() (parsing.library.extractor.Extraction method)


      	info (timetable.models.Course attribute)


      	ingest_course() (parsing.library.ingestor.Ingestor method)


      	ingest_eval() (parsing.library.ingestor.Ingestor method)


      	ingest_meeting() (parsing.library.ingestor.Ingestor method)


      	ingest_section() (parsing.library.ingestor.Ingestor method)


      	IngestionError


      	IngestionWarning


      	Ingestor (class in parsing.library.ingestor)


      	init_screenshot_dir() (semesterly.test_utils.SeleniumTestCase method)


  

  	
      	instructor (parsing.library.tracker.NullTracker property)


      	instructors (timetable.models.Section attribute)


      	Integration (class in timetable.models)


      	Integration.DoesNotExist


      	Integration.MultipleObjectsReturned


      	INTERVAL (parsing.library.viewer.Timer attribute)


      	is_locked (timetable.utils.Slot attribute)


      	is_optional (timetable.utils.Slot attribute)


      	is_short_course() (in module parsing.library.utils)


      	items() (parsing.library.ingestor.Ingestor method)

      
        	(parsing.library.utils.DotDict method)


      


      	iterrify() (in module parsing.library.utils)


  





J


  	
      	JSONColoredFormatter (class in parsing.library.logger)


  

  	
      	JSONFormatter (class in parsing.library.logger)


      	JSONStreamWriter (class in parsing.library.logger)


  





K


  	
      	key (parsing.library.extractor.Extraction attribute)


      	keys() (parsing.library.ingestor.Ingestor method)

      
        	(parsing.library.utils.DotDict method)


      


  

  	
      	kind_to_validation_function (parsing.library.validator.Validator attribute)


      	KINDS (parsing.library.validator.Validator attribute), [1]

      
        	(parsing.library.viewer.StatView attribute), [1]


      


  





L


  	
      	LABELS (parsing.library.viewer.StatView attribute), [1]


      	last_updated (parsing.models.DataUpdate attribute)


      	level (parsing.library.logger.JSONStreamWriter attribute)

      
        	(timetable.models.Course attribute)


      


      	load_schemas() (parsing.library.validator.Validator class method)


  

  	
      	location (timetable.models.Offering attribute)


      	lock_course() (semesterly.test_utils.SeleniumTestCase method)


      	log_ical_export() (in module student.views)


      	login_via_fb() (semesterly.test_utils.SeleniumTestCase method)


      	login_via_google() (semesterly.test_utils.SeleniumTestCase method)


  





M


  	
      	make_list() (in module parsing.library.utils)


      	mapping (parsing.library.viewer.Timer attribute)


      	meeting_section (timetable.models.Section attribute)


      	meta (parsing.library.digestor.Absorb attribute)

      
        	(parsing.library.digestor.Digestor attribute)


      


      	MISCELLANEOUS (parsing.models.DataUpdate attribute)


      	mode (parsing.library.tracker.NullTracker property)


      	MODELS (parsing.library.digestor.Digestor attribute), [1]


      	
    module

      
        	agreement.models


        	authpipe.utils


        	authpipe.views


        	courses.serializers


        	courses.utils


        	courses.views


        	helpers.decorators


        	helpers.mixins


        	parsing.library.digestor


        	parsing.library.exceptions


        	parsing.library.extractor


        	parsing.library.ingestor


        	parsing.library.logger


        	parsing.library.tracker


        	parsing.library.utils


        	parsing.library.validator


        	parsing.library.viewer


        	parsing.models


        	searches.utils


        	searches.views


        	semesterly.test_utils


        	student.models


        	student.serializers


        	student.utils


        	student.views


        	timetable.models


        	timetable.serializers


        	timetable.utils


        	timetable.views


      


  

  	
      	MultipleDefinitionsWarning


  





N


  	
      	n_elements_to_be_found (class in semesterly.test_utils)


      	name (timetable.models.Course attribute)

      
        	(timetable.models.Semester attribute)


      


  

  	
      	notes (timetable.models.Course attribute)


      	NullTracker (class in parsing.library.tracker)


      	num_credits (timetable.models.Course attribute)


  





O


  	
      	Offering (class in timetable.models)


      	Offering.DoesNotExist


      	Offering.MultipleObjectsReturned


  

  	
      	offerings (timetable.utils.Slot attribute)


      	open_and_query_adv_search() (semesterly.test_utils.SeleniumTestCase method)


      	open_course_modal_from_search() (semesterly.test_utils.SeleniumTestCase method)


      	open_course_modal_from_slot() (semesterly.test_utils.SeleniumTestCase method)


  





P


  	
      	ParseError


      	ParseJump


      	ParseWarning


      	
    parsing.library.digestor

      
        	module


      


      	
    parsing.library.exceptions

      
        	module


      


      	
    parsing.library.extractor

      
        	module


      


      	
    parsing.library.ingestor

      
        	module


      


      	
    parsing.library.logger

      
        	module


      


      	
    parsing.library.tracker

      
        	module


      


      	
    parsing.library.utils

      
        	module


      


      	
    parsing.library.validator

      
        	module


      


      	
    parsing.library.viewer

      
        	module


      


      	
    parsing.models

      
        	module


      


      	patch() (student.views.UserView method)


      	patterns (parsing.library.extractor.Extraction attribute)


  

  	
      	PersonalEvent (class in student.models)


      	PersonalEvent.DoesNotExist


      	PersonalEvent.MultipleObjectsReturned


      	PersonalEventView (class in student.views)


      	PersonalTimetable (class in student.models)


      	PersonalTimetable.DoesNotExist


      	PersonalTimetable.MultipleObjectsReturned


      	PersonalTimeTablePreferencesSerializer (class in timetable.serializers)


      	PipelineError


      	PipelineException


      	PipelineWarning


      	pop() (parsing.library.ingestor.Ingestor method)

      
        	(parsing.library.utils.DotDict method)


      


      	popitem() (parsing.library.ingestor.Ingestor method)

      
        	(parsing.library.utils.DotDict method)


      


      	post() (searches.views.CourseSearchList method)

      
        	(student.views.ReactionView method)


        	(student.views.UserTimetableView method)


        	(timetable.views.TimetableLinkView method)


        	(timetable.views.TimetableView method)


      


      	prerequisites (timetable.models.Course attribute)


      	pretty_json() (in module parsing.library.utils)


      	professor (timetable.models.Evaluation attribute)


      	ptt_to_tuple() (semesterly.test_utils.SeleniumTestCase method)


      	put() (authpipe.views.RegistrationTokenView method)


  





R


  	
      	Reaction (class in student.models)


      	Reaction.DoesNotExist


      	Reaction.MultipleObjectsReturned


      	ReactionView (class in student.views)


      	reason (parsing.models.DataUpdate attribute)


      	receive() (parsing.library.viewer.ETAProgressBar method)

      
        	(parsing.library.viewer.Hoarder method)


        	(parsing.library.viewer.StatProgressBar method)


        	(parsing.library.viewer.StatView method)


        	(parsing.library.viewer.TimeDistributionView method)


        	(parsing.library.viewer.Viewer method)


      


      	RedirectToSignupMixin (class in helpers.mixins)


      	RegistrationToken (class in student.models)


      	RegistrationToken.DoesNotExist


      	RegistrationToken.MultipleObjectsReturned


      	RegistrationTokenView (class in authpipe.views)


      	related_courses (timetable.models.Course attribute)


  

  	
      	relative (parsing.library.validator.Validator attribute)


      	remove_course() (semesterly.test_utils.SeleniumTestCase method)


      	remove_course_from_course_modal() (semesterly.test_utils.SeleniumTestCase method)


      	remove_defaulted_keys() (parsing.library.digestor.Vommit method)


      	remove_offerings() (parsing.library.digestor.Absorb static method)


      	remove_section() (parsing.library.digestor.Absorb static method)


      	remove_viewer() (parsing.library.tracker.NullTracker method)

      
        	(parsing.library.tracker.Tracker method)


      


      	report() (parsing.library.tracker.NullTracker method)

      
        	(parsing.library.tracker.Tracker method)


        	(parsing.library.viewer.ETAProgressBar method)


        	(parsing.library.viewer.Hoarder method)


        	(parsing.library.viewer.StatProgressBar method)


        	(parsing.library.viewer.StatView method)


        	(parsing.library.viewer.TimeDistributionView method)


        	(parsing.library.viewer.Viewer method)


      


      	required_values (parsing.library.viewer.Timer attribute)


  





S


  	
      	safe_cast() (in module parsing.library.utils)


      	same_as (timetable.models.Course attribute)


      	save_user_settings() (semesterly.test_utils.SeleniumTestCase method)


      	schema_validate() (parsing.library.validator.Validator static method)


      	school (parsing.library.digestor.Absorb attribute)

      
        	(parsing.library.digestor.DigestionAdapter attribute)


        	(parsing.library.digestor.Digestor attribute)


        	(parsing.library.ingestor.Ingestor attribute)


        	(parsing.library.tracker.NullTracker property)


        	(parsing.models.DataUpdate attribute)


        	(timetable.models.Course attribute)


      


      	SchoolList (class in courses.views)


      	schools (parsing.library.viewer.Hoarder property)


      	score (timetable.models.Evaluation attribute)


      	search() (in module searches.utils)


      	search_course() (semesterly.test_utils.SeleniumTestCase method)


      	
    searches.utils

      
        	module


      


      	
    searches.views

      
        	module


      


      	Section (class in timetable.models)


      	section (timetable.models.Offering attribute)

      
        	(timetable.utils.Slot attribute)


      


      	Section.DoesNotExist


      	Section.MultipleObjectsReturned


      	section_type (timetable.models.Section attribute)


      	sections (timetable.utils.Timetable attribute)


      	sections_are_filled() (in module courses.utils)


      	SectionSerializer (class in courses.serializers)


      	seen (parsing.library.validator.Validator attribute)


      	select_nth_adv_search_result() (semesterly.test_utils.SeleniumTestCase method)


      	SeleniumTestCase (class in semesterly.test_utils)


      	Semester (class in timetable.models)


      	semester (parsing.models.DataUpdate attribute)

      
        	(timetable.models.Section attribute)


      


      	Semester.DoesNotExist


      	Semester.MultipleObjectsReturned


  

  	
      	
    semesterly.test_utils

      
        	module


      


      	SemesterSerializer (class in courses.serializers)


      	serializer_class (student.views.UserTimetablePreferenceView attribute)


      	setdefault() (parsing.library.ingestor.Ingestor method)

      
        	(parsing.library.utils.DotDict method)


      


      	setUp() (semesterly.test_utils.SeleniumTestCase method)


      	setUpClass() (semesterly.test_utils.SeleniumTestCase class method)


      	share_timetable() (semesterly.test_utils.SeleniumTestCase method)


      	short_date() (in module parsing.library.utils)


      	SimpleNamespace (class in parsing.library.utils)


      	size (timetable.models.Section attribute)


      	skip_duplicates (parsing.library.ingestor.Ingestor attribute)


      	Slot (class in timetable.utils)


      	slots_to_timetables() (in module timetable.utils)


      	SlotSerializer (class in timetable.serializers)


      	start() (parsing.library.tracker.NullTracker method)

      
        	(parsing.library.tracker.Tracker method)


      


      	StatProgressBar (class in parsing.library.viewer)


      	stats (parsing.library.tracker.NullTracker property)

      
        	(parsing.library.viewer.StatView attribute)


      


      	StatView (class in parsing.library.viewer)


      	strategy (parsing.library.digestor.Digestor attribute)


      	Student (class in student.models)


      	Student.DoesNotExist


      	
    student.models

      
        	module


      


      	Student.MultipleObjectsReturned


      	
    student.serializers

      
        	module


      


      	
    student.utils

      
        	module


      


      	
    student.views

      
        	module


      


      	StudentSerializer (class in student.serializers)


      	summary (timetable.models.Evaluation attribute)


      	SWITCH_SIZE (parsing.library.viewer.StatProgressBar attribute)


      	switch_to_ptt() (semesterly.test_utils.SeleniumTestCase method)


  





T


  	
      	take_alert_action() (semesterly.test_utils.SeleniumTestCase method)


      	tearDown() (semesterly.test_utils.SeleniumTestCase method)


      	term (parsing.library.tracker.NullTracker property)


      	text_to_be_present_in_element_attribute (class in semesterly.test_utils)


      	text_to_be_present_in_nth_element (class in semesterly.test_utils)


      	time (parsing.library.tracker.NullTracker property)


      	time24() (in module parsing.library.utils)


      	time_end (timetable.models.Offering attribute)


      	time_start (timetable.models.Offering attribute)


      	TimeDistributionView (class in parsing.library.viewer)


      	timeout (semesterly.test_utils.SeleniumTestCase attribute)


      	Timer (class in parsing.library.viewer)


      	Timetable (class in timetable.utils)


      	
    timetable.models

      
        	module


      


  

  	
      	
    timetable.serializers

      
        	module


      


      	
    timetable.utils

      
        	module


      


      	
    timetable.views

      
        	module


      


      	TimetableLinkView (class in timetable.views)


      	TimetableView (class in timetable.views)


      	titlize() (in module parsing.library.utils)


      	Tracker (class in parsing.library.tracker)


      	tracker (parsing.library.digestor.Digestor attribute)

      
        	(parsing.library.ingestor.Ingestor attribute)


        	(parsing.library.validator.Validator attribute)


      


      	TrackerError


      	type_ (parsing.library.logger.JSONStreamWriter attribute)


  





U


  	
      	UNICODE_WHITESPACE (parsing.library.ingestor.Ingestor attribute)


      	unstopped_description (timetable.models.Course attribute)


      	update() (in module parsing.library.utils)

      
        	(parsing.library.ingestor.Ingestor method)


        	(parsing.library.utils.DotDict method)


      


      	update_events() (student.views.UserTimetableView method)


      	update_locked_sections() (in module timetable.utils)


  

  	
      	UPDATE_TYPE (parsing.models.DataUpdate attribute)


      	update_type (parsing.models.DataUpdate attribute)


      	url_matches_regex (class in semesterly.test_utils)


      	UserTimetablePreferenceView (class in student.views)


      	UserTimetableView (class in student.views)


      	UserView (class in student.views)


      	usesTime() (parsing.library.logger.JSONColoredFormatter method)

      
        	(parsing.library.logger.JSONFormatter method)


      


  





V


  	
      	validate (parsing.library.ingestor.Ingestor attribute)


      	validate() (parsing.library.validator.Validator method)


      	validate_course() (parsing.library.validator.Validator method)


      	validate_course_modal() (semesterly.test_utils.SeleniumTestCase method)


      	validate_course_modal_body() (semesterly.test_utils.SeleniumTestCase method)


      	validate_directory() (parsing.library.validator.Validator method)


      	validate_eval() (parsing.library.validator.Validator method)


      	validate_final_exam() (parsing.library.validator.Validator method)


      	validate_instructor() (parsing.library.validator.Validator method)


      	validate_location() (parsing.library.validator.Validator method)


      	validate_meeting() (parsing.library.validator.Validator method)


      	validate_section() (parsing.library.validator.Validator method)


      	validate_self_contained() (parsing.library.validator.Validator method)


      	validate_subdomain() (in module helpers.decorators)


  

  	
      	validate_time_range() (parsing.library.validator.Validator method)


      	validate_timeable() (semesterly.test_utils.SeleniumTestCase method)


      	validate_website() (parsing.library.validator.Validator static method)


      	ValidateSubdomainMixin (class in helpers.mixins)


      	ValidationError


      	ValidationWarning


      	Validator (class in parsing.library.validator)


      	validator (parsing.library.ingestor.Ingestor attribute)


      	values() (parsing.library.ingestor.Ingestor method)

      
        	(parsing.library.utils.DotDict method)


      


      	Viewer (class in parsing.library.viewer)


      	ViewerError


      	Vommit (class in parsing.library.digestor)


      	vommit (parsing.library.digestor.Burp attribute)


  





W


  	
      	waitlist (timetable.models.Section attribute)


      	waitlist_size (timetable.models.Section attribute)


      	was_full (timetable.models.Section attribute)


      	with_traceback() (parsing.library.digestor.DigestionError method)

      
        	(parsing.library.exceptions.ParseError method)


        	(parsing.library.exceptions.ParseJump method)


        	(parsing.library.exceptions.ParseWarning method)


        	(parsing.library.exceptions.PipelineError method)


        	(parsing.library.exceptions.PipelineException method)


        	(parsing.library.exceptions.PipelineWarning method)


        	(parsing.library.ingestor.IngestionError method)


        	(parsing.library.ingestor.IngestionWarning method)


        	(parsing.library.tracker.TrackerError method)


        	(parsing.library.validator.MultipleDefinitionsWarning method)


        	(parsing.library.validator.ValidationError method)


        	(parsing.library.validator.ValidationWarning method)


        	(parsing.library.viewer.ViewerError method)


      


  

  	
      	wrap_up() (parsing.library.digestor.Absorb method)

      
        	(parsing.library.digestor.Burp method)


        	(parsing.library.digestor.DigestionStrategy method)


        	(parsing.library.digestor.Digestor method)


        	(parsing.library.digestor.Vommit method)


      


      	write() (parsing.library.logger.JSONStreamWriter method)


      	write_key_value() (parsing.library.logger.JSONStreamWriter method)


      	write_obj() (parsing.library.logger.JSONStreamWriter method)


  





Y


  	
      	year (parsing.library.tracker.NullTracker property)

      
        	(timetable.models.Evaluation attribute)


        	(timetable.models.Semester attribute)


      


  







            

          

      

      

    

  _images/slot_hover_tip.png
Prerequisites

EN.600.226 AND
EN.600.465 Students

mav raceive credit for

EN.601.468 68
Machine Translation

potn.





_images/slot_manager.png
10:00 || 10:00 - 10:50 10:00 - 10:50 10:00 - 10:50
: Calculus Il (For Biologica... (Oé) Calculus Il (For Biologica... (Oé) Calculus Il (For Biologica... (Oé)

11:00
12:00 [ 12:00 - 12:50 12:00 - 12:50 12:00 - 12:50
} Introduction to Business (07)ﬂ Introduction to Business (07)ﬂ Introduction to Business (07)ﬂ
1a& 1a& 1a&
1:00
1:30-2
Ca...(04)
. a
2:00
3:00 3:00 - 3:50
Introduction to Business (07)ﬂ
1a&

4:00





_images/signup_modal.png
That feature requires
an account..

«  Find classes with friends

« Create custom events

11:00 - 12:00
Lunch @ Dining Hall

« Save & name multiple

timetables

Fall 16 - Double Major -

Fall 2016
Fall 16 - Double Major

Fall 16 - Major/Minor

W Itsallfree

Semester.ly will NEVER post to your timeline. Your course selections will not be shared
with any other user without your permission.






_images/slot.png
1:30-2:45
Machine Translation (01)

1a






_images/terms_of_service_modal.png
Terms of Service and Privacy Policy

Our Terms of Service and Privacy Policy have been updated.
Please review them here:

Terms of Service &
Privacy Policy &

« | accept the Terms of Service

‘You must accept the new Terms of Service to continue using Semester.ly.






_images/timetable_loader.png
(n)@ -





_images/social_profile.png
@ vS17  Searching 17

o

8:00
9:00
10:00

11.0N

< +

w

£

£ Account

Ll Stats

B Terms

i Privacy

= Sign out





_images/terms_of_service_banner.png
By using Semester.ly you agree to our Terms of Service and Privacy Policy X






_images/timetable_name_input.png
Timetable Name Input :D

Fall 2017
Timetable Name Input :D
w/ Part Time Job

A e N ”a® ~: 1





_images/top_bar.png
Advanced

@ Semeste”y wFall2017  Searching Fall 2017 Advanc Signup/Login =





_images/advanced_search.png
@ Advanced Search

Department Filter A+

'Computer Science x)

Area Filter Clear All 4+
Qx
Level Filter ear Al 4

|200%

Day/Time Filter

Data

Data Structures
EN.601.226

Data Structures
EN.601.226

o
.

Average Course Rating

quiskes

EN.500.132 OR (EN. 500,112 or EN.601 220) o AP Computer Science o
valent

ram of Study Ta

COGS COMPCG, ROBO-CMCS

Friends In This Course

No Classmates Found

Fr Who Have Taker

No Classmates Found

eactior

Check out your classmate's reactions - click an emojito add your own opinion!

raede e






_images/alert.png
ADDING THAT EVENT CAUSES A
CONFLICT!

Allow Conflicts!






nav.xhtml

    
      Table of Contents


      
        		
          About Semester.ly
        


      


    
  

_images/user_acquisition_modal.png
Login/Signup

Recommended:

Continue with Facebook

Allows the option to friends in your classes.

or

G Continue with Google






_images/user_settings_modal.png
Welcome!

What's your major?

Anthropology

What's your graduating class year?

2019

Would you like to find classes with friends?
See which Facebook friends will be your classmates! Only friends in

your course will see your name.

Would you like to find sections with friends?
See which Facebook friends will be in your section! Only friends in

your section will see your name.

Find new friends in your classes!
Find your peers for this semester. All students in your courses will be

able to view your name and public Facebook profile.

Notifications Turn On Notifications






_images/course_modal.png
Introduction to Business

EN.660.105, EN Entrepreneurship and Management

f' Reactions Lecture Sections(Hover to see the section on your timetable)
Check out your classmate's reactions — click an emoji to add your own (01) (02)
. opinion! L. Aronhime L. Aronhime
C re d ‘ tS : 3 waitlist / 19 seats 2 waitlist / 19 seats
Average Course Ratin . ' 100 (03) (04)
g 9 Q % ) . ° a L. Aronhime L. Aronhime
**** 2 waitlist / 19 seats 1 waitlist / 19 seats
52% of Seats Added on Semesterly -
Course Description (05) (06)
Prerequisites L. Aronhime L. Aronhime

This course is designed as an introduction to the terms, concepts, and

0 open/ 19 seats 0open/ 19 seats
None values of business and management. The course comprises three broad
categories: the economic, financial, and corporate context of business (07) , (08) )
Areas . - . . L. Aronhime L. Aronhime
activities; the organization and management of business enterprises; and, 0 open /19 seats &  Oopen/19seats
S, Writing Intensive the marketing and production of goods and services. Topic specific readings,
short case studies and financial exercises all focus on the bases for Eozzonhime
Friends In This Course managerial decisions as well as the long and short-term implications of 6 open /10 seats
. Eric Calder those decisions in a global environment. No audits.
Students Also Take
Friends Who Have Taken Course Evaluations
This Course
Spring 2015 (Furst) Spring 2015 (&) Spring 2015 (Aronhime)
@ Max Yeo ***1 (3:32) **** 4 **** (3.97)
Q- T o |
Fokhkk (4.05) Fokkkk (387) Fodedkk 3.97)
Q Andrew Wong
- Spring 2013 (Aronhime) Spring 2013 (Quesenberry) Fall 2012
Neha Kay TR Ak A (385 'S o ¢ (3.04) R A A K (395

) Emily Bi
“ mily Bumetee Spring 2015 (Furst) Professor: Mary Furst *h %7 (3.32)





_static/plus.png





_images/course_modal1.png
Introduction to Fiction & Poetry |
AS.220.105, Writing Seminars ()

3

credit

Average Course Rating

Fokkkk

f Seats Added on Semesterly

Prerequisites
None

Program of

None
Friends In This Course
No Classmates Found

Friends Who H
This Course

ve Taken

No Classmates Found

Reactions

Check out your classmate's reactions ~ click an emoji to add your own

“eae e ge

Course Description

An introduction to basic strategies in the writing of poetry and fiction, with
readings by Joyce, Woolf, Baldwin, Munro, Garcia Marquez, Donne, Bishop,
Yeats, Komunyakaa, Tretheway, and others. Students will leam the elements
of the short story and try their hand at a variety of forms: realist, fantastical,
experimental. They ll also study the basic poetic forms and meters, from
the ballad to the sonnet, iambic pentameter to free verse. Students will
compose short stories and poems and workshop them in class. This
course is a prerequisite for most upper level courses. This course Is part
one of the year-long Introduction to Fiction and Poetry, and must be taken
before AS.220.106.

Course Evaluations

Spring 2015 (Emst) ‘Spring 2015 (Poetry) Spring 2015 (Landry)
Fokkokk @7) Fokdok ok (299 Fkokkk “5)
Spring 2015 (Eisman) Spring 2015 (Xe) Spring 2015 (Frantz)
Fokdok k(386 Jokdokok 46 Fokokokk @79

‘Spring 2015 (y) ‘Spring 2015 (Booe) ‘Spring 2015 (Goldberg)
Fokdokok (439 Fokdokok (425 Fkkkk “5)

Spring 2015 (Dol) Spring 2015 (Siskel) Spring 2015 (Childers)
Jokkokok (439 Jokkokk (49 Fokokokk (369
Spring 2015 (Koekkoek) Spring 2015 (Hudgins) Spring 2015 (Raskulinecz)
Fokokkk (486 Fokdok ok @57 Fokdokk (299
Spring 2015 (Winchester) ‘Spring 2015 (Daynes) 2014 (Stintz)

RN<x

Leclure Sections (Hoverto see the secton on your tmetable)

(1)
R Hubbell
e

(03)
R Hubbell
ki S

(05)
¢ wiay
Gopm 7 somn

©07)
H. Choi
Twarlet /13 sests

(09)
D. Guida
e o

an
M. Cook
Ocpen; 15 sems

13)
B. Kessler
by AN

(15)
K Ugnueze
bt -2 B

an

L Raszick
Ocpen; 15 sems
19

K Ugwueze
T weilst/ 15 sests

@)
L Raszick
a1 15 senta

(02)
J.cox
Sopen) 150

(04
E Emmons
Gopen 1500ms

(06)
C. Atherton
by 0

(08)
E Emmons
Gopen /1330w

(10)
0. Carpenter
bkerL ol

(12)
B Kessler
Gopent Summn

14
S Neugebauer

3watine/ 15 50w

(16)
D. Carpenter
Zatin 15 0ms

(18)
S. Neugebauer

(20)

B Steidie
Zwatise/ 15 sems

2)
B. Basham
g






_images/calendar.png
Mon Tue Wed Thu Fri
8:00

9:00
10:00

11:00

1:00
- .
3:00 3:00 - 5:00
Custom Event! :D
0 ‘






_static/file.png





_images/compare_timetables.png
& Semesterly

& Active Compared
Mon Tue Wed Thu Fri 17.00 14.00

800

9:00

10:00

11:00

12:00

Inroducsion to Human Compuser Inaraction (03)
1200- 115

EN.601.490

8:00

900

Data last updated: Mon Mar 28 2022 15:38:00 GMT-0400 (Eastern Daylignt Time)

News Toms Pivacy Contactus Feedback Discord Facobook [OFGUOW

Exit Compare Timetables





_static/minus.png





_images/credit_ticker.png
9.00

credits





_images/custom_slot.png
3:00-5:00
Custom Event! :D





_images/course_modal_body.png
credits

Average Course Rating

Fokkok

52% of Seats Added on Semesterly
Prerequisites

None
Areas
S, Writing Intensive

Friends In This Course

. Eric Calder

Friends Who Have Taken
This Course

@ Max Yeo
‘ Cassidy Quiros
Q Andrew Wong

Neha Kay

‘& Emily Burnette

Reactions

Check out your classmate's reactions — click an emoji to add your own
opinion!

RewTLeea

Course Description

This course is designed as an introduction to the terms, concepts, and
values of business and management. The course comprises three broad
categories: the economic, financial, and corporate context of business
activities; the organization and management of business enterprises; and,
the marketing and production of goods and services. Topic specific readings,
short case studies and financial exercises all focus on the bases for
managerial decisions as well as the long and short-term implications of
those decisions in a global environment. No audits.

Course Evaluations

Spring 2015 (Furst) Spring 2015 (&) Spring 2015 (Aronhime)
Fokdok ok (332) 1 2.0.0 ¢ AC Fodedkk 3.97)
Fall 2014 Spring 2014 Fall 2013
Fodededke (4.05) Fodedokok (387) Fodedkk 3.97)

Spring 2013 (Aronhime) Spring 2013 (Quesenberry) Fall 2012
TR Ak A (385 'S o ¢ (3.04) R A A K (395
Spring 2015 (Furst) Professor: Mary Furst e R (3.32)

Lecture Sections(Hover to see the section on your timetable)

(07)
L. Aronhime
3 waitlist / 19 seats

(03)
L. Aronhime
2 waitlist / 19 seats

(05)
L. Aronhime
0 open/ 19 seats

(07)
L. Aronhime
0 open/ 19 seats

(09)
L. Aronhime
6 open / 10 seats

Students Also Take

(02)
L. Aronhime
2 waitlist / 19 seats

(04)
L. Aronhime
1 waitlist/ 19 seats

(06)
L. Aronhime
0open/ 19 seats

(08)
L. Aronhime
0open/ 19 seats






_images/course_modal_section.png
Lecture Sections(Hover to see the section on your
timetable)

(01)
P. Koehn
11 waitlist / 30 seats a






_images/day_calendar.png
8:00

9:00

10:00

11:00

12:00 || 12:00 - 12:50
Introduction to Business (07)

18 a

1:00

2:00

3:00

4:00

5:00

Data last updated: 2017-07-13 00:52 EDT





_images/tut_modal.png
~ Fall 2016 | Caleulug

Introduction to Calculus
AS.110.105

Calculus | (Biology and Social Sciences)
Add this course to your timetable

Calculus Il
AS.110.107

Calculus |
AS.110.108

*)
")

Pro-tip: use the arrow keys to go through search results,
hit enter to add the current selection






_images/evaluation.png
Spring 2015 (Furst) Professor: Mary Furst P e X7

The best aspects of this course were the helpful TAs and the engaging
professor who provided students with a solid introduction to business
and related concepts to relevant life examples. Students felts that the
workload was overwhelming and filled by busywork, and that the
exams were difficult. Suggestions for improvement included making
midterms more representative of lecture topics, emphasizing the “big
picture” on lecture notes instead of details, and having fewer assigned
readings and quizzes. Prospective students should be prepared for a
writing intensive and information dense course with a heavy workload.
Prospective students are encouraged to read all assigned articles,
begin projects early,





_images/evaluation_list.png
Spring 2013 (Aronhime) Spring 2013 (Quesenberry) Fall 2012

Fokedkok (389 Yokok (3.04) Fokedkok (3.95)

Spring 2015 (Furst) Professor: Mary Furst P e X7

The best aspects of this course were the helpful TAs and the engaging
professor who provided students with a solid introduction to business
and related concepts to relevant life examples. Students felts that the
workload was overwhelming and filled by busywork, and that the
exams were difficult. Suggestions for improvement included making
midterms more representative of lecture topics, emphasizing the “big
picture” on lecture notes instead of details, and having fewer assigned
readings and quizzes. Prospective students should be prepared for a
writing intensive and information dense course with a heavy workload.
Prospective students are encouraged to read all assigned articles,
begin projects early,





_images/general_labels.png
@ Semest er.ly v Fall 2022 | Searching Fall 2022
A B

<Co@o 000 >
Mon Tue
800

9:00
11:00
12:00
1.00

2:00

Wed

@®

Advanced
Search

Fri

40
Sm
A
+®
aT

N -

J

Registered Courses

»

Fall 2022

Registered Courses

laeal K M
Baciup L

T

® o 20
® @ o

3

Optional Courses





_images/guidelines_Page_1.png
LOGOMARK TYPOGRAPHY

Palanquin Medium
AaBbCcDdEeFfGg1234567890
Palanquin Bold
AaBbCcDdEeFfGg1234567890

Roboto
AaBbCcDdEeFfGg1234567890

COLORPALETTE

#34495E #FD7473 #36DEBB #5CCCF2 #FFD462





_images/exploration_modal.png
® Advanced Search Searching Fall 2017

returned 20 Search Results

Department Filter Principles of Immunology

% AAP Biotechnology Principles of Immunology AS.410.613

AS.410.613
Area Filter Funding A New Venture e o o
AS.410.732

None Selected

Microbiology
Level Filter AS.410.615

None Selected Cred |J[S

Creating A Biotechnology Enterprise

AS.410.646

Average Course Ratin
Day/Time Filter verag Y ing

Neurobiology
None Selected AS.410.628 0% of Seats Added on Semesterly

Managing and Leading Biotechnology Professionals Prerequisites

AS.410.643 None

Food Microbiology Areas
AS.410.674
None

Food and Drug Law ) A )
AS.410.676 Friends In This Course or Who Have Taken This Course

Gene Expression Data Analysis and Visualization
AS.410.671

Molecular Targets & Cancer Create an account with Facebook and see which of your Facebook friends are taking
AS.410.750 or have already taken this class!

f Link Facebook

Reactions

Communication for Health Care Professionals
AS.410.705






_images/final_exams_modal.png
Final Exam Schedule

Senior Spring
Sun 5/7 Mon 5/8 Tue 5/9 Wed 5/10 Thu 5/11 Fri 5/12 Sat 5/13
Sun 5/14 Mon 5/15 Tue 5/16 Wed 5/17 Thu 5/18 Fri 5/19 Sat 5/20

Some courses do not have finals, check with your syllabus or instructor to confirm.
% Link to registar's final exams schedule






_images/pagination.png
<@eo oo >

Mon
8:00





_images/peer_modal.png
Your Classmates

Eric Calder
o Frends

@ EN.550.436 - Data Mining

@ AS.130.202 - Ancient Mythology
@ AS.290.101 - Human Qrigins

@ EN.600.435 - Artificial Intelligence

+ Alwin Hui

{0 v Friends

2 EN.600.411 - Computer Science Innovation & Entrepren...

@ EN.600.435 - Artificial Intelligence

Mario Antoun

# £ View Profile

@ EN.600.435 - Artificial Intelligence

peer is in your class & section
peer is in your class only

Sho Conte
o Frends

@ EN.550.436 - Data Mining

@ AS.130.202 - Ancient Mythology
@ AS.290.101 - Human Qrigins

@ EN.600.435 - Artificial Intelligence

Max Yeo

{0 v Friends

@ EN.600.435 - Artificial Intelligence

Tom Reinhart

{0 v Friends

2 EN.600.411 - Computer Science Innovation & Entrepren...






_images/guidelines_Page_2.png
LOGO USAGE
@ Semester.ly Textbooks @ @ @
@ Semester.ly Blog

@ Semester.ly Affiliates @ @

@ Semester.ly Placeholder

CLEARANCE

@ Semester.ly Textbooks






_images/master_slot.png
ASH7Z30 1T L] < X
General Physics Laboratory |

C. Chien, J. Mumford

1 credit m






_images/reaction.png
\o

@he 80 %%

. Crap Clas:





_images/save_calendar_modal.png
Export calendar

G Add to Google Calendar

Add to your Google Calendar in just one click, no downloads. No importing

or

K3 Download Calendar

Downloads a .ics file which can be uploaded to Google Calendar, loaded in
toiCal., or any other calendar application.






_images/preference_modal.png
Timetable Preferences

Conflicts: Disabled

________________________________________________

Save and Close






_images/search_result.png
Diff. & Integral Calculus
MATH 120B

Differential and Integral Calculus
MATH 121B





_images/search_side_bar.png
Advanced
‘ @Search @ v
Differential and Integral Calculus

Hover over a section below for a preview on your
timetable!

Lecture Sections

001HoozHoosngH020H021Hozz’

. Tutorial Sections fie
‘004”005”006”007”008”009”010’

‘0116”012”013”014”015”016”017’ ce.

ﬁ

n +

'g

n +





_images/search_bar.png
@ vW'lB‘ calc

Diff. & Integral Calculus
MATH 120B

Differential and Integral Calculus
MATH 121B
QN






_images/search_labels.png
& Semesterly

8:00

900
10:00
11:00

12:00

v Fall2022 | fiction
Introduction to Fiction & Poetry |
AS220105

Introduction to Fiction & Poetry Il
45220106

Introduction to Fiction & Nonfiction
45220108

The Craft of Fiction: Narrative Perch
45220200

+

Advanced
Search

Introduction to Fiction & Poetry |

Hover over & section below for & preview on your tmetablel
Lecture Sections.

(tov]( 2] 109] (10909 (08
(]{ea][ao][an (0] (03] (o]
[09](as][on][ea][as) )
(][] (][9] (0] D






_images/side_scroller.png
Spring 2015 (Furst)

* A% (3.32)

Fall 2014

TR A K (405

Spring 2013 (Aronhime)

TR A KA K (385

Spring 2015 (Furst)

Spring 2015 (&)

2. 0. 0.0 0 &KC)

Spring 2014

TR AR K (387)

Spring 2013 (Quesenberry)

'S o ¢ (3.04)

Professor: Mary Furst

Spring 2015 (Aronhime)

T hk Kk (397)
Fall 2013

T hk Kk (397)
Fall 2012

TRk (3.95)

) 0. 0.¢ (3.32)

The best aspects of this course were the helpful TAs and the engaging
professor who provided students with a solid introduction to business and
related concepts to relevant life examples. Students felts that the
workload was overwhelming and filled by busywork, and that the exams
were difficult. Suggestions for improvement included making midterms
more representative of lecture topics, emphasizing the “big picture” on
lecture notes instead of details, and having fewer assigned readings and
quizzes. Prospective students should be prepared for a writing intensive
and information dense course with a heavy workload. Prospective
students are encouraged to read all assigned articles, begin projects early,





_images/semesterly.png
@ Semesterjy VFaII2017‘ marketinlg

Mon
8:00

9:00

10:00

11:00

Branding and Marketing Communications
BU.430.710

Business-To-Business Marketing
BU.460.710

Principles of Marketing
EN.660.250

Social Media and Marketing
EN.660.453 Waitlist Only

@ Advanced

Search
Branding and Marketing
Communications

Hover over a section below for a preview on your

timetable!

n +

(1)
n +
n +

1:00

4:00

5:00

6:00

7:00

8:00

9:00

Data last updated: 2017-07-13 00:52 EDT

Terms Privacy

Contact us

Feedback

Facebook EVANRICRIIY

Lecture Sections

Section Filled

Section Filled

@ - =

friends

ICe.

Textbooks

FIOLED
BY

RANDOMNMNESS

L -
Lyt e M

Required
Introduction To Fooled by
Error Analysis... ~ Randomness:...
@ Buy or Rent @ Buy or Rent

SHORT
HISTORY O

FINANCIATL

Required

A Short History
of Financial...

@ Buy or Rent





_images/side_bar.png
Timetable Name Input :D v
9 O O Average Course Rating
cr.edits
Current Courses & Find new friends

ProTip: use @to lock a section in place

EN.601.668 < X
Machine Translation

P. Koehn

3 credits ‘

Section Filled

Section Filled

AS.173.112 < X
General Physics Laboratory Il

C. Chien, J. Mumford

1 credit

Textbooks

FIOLED AR
BY FINANCIAL
RANDOMNESS AR LS

Required Required

Introduction To Fooled by A Short History
Error Analysis... ~ Randomness... of Financial...

@ Buy or Rent @ Buy or Rent @ Buy or Rent






